### Probabilistic Language Models

#### Miles Osborne

School of Informatics University of Edinburgh miles@inf.ed.ac.uk

February 26, 2008

Miles Osborne

Probabilistic Language Models

1

Background
A simple language model
Estimating LMs
Smoothing

### What is a language model?

A language model is a distribution over sentences:

- Is the sentence *John loves Mary* more likely than the string *Mary Mary John*?
- Which word is more likely to be next: John loves . . .

LMs have a wide variety of uses:

- In Speech Recognition (predict which word is going to be spoken).
- In Mobile Phones (predict which letter is going to be typed)
- Machine translation (order good translations from bad ones).
- In theories of human language learning.

Background

2 A simple language model

3 Estimating LMs

4 Smoothing

Miles Osborne

Probabilistic Language Models

Probabilistic Language Models

Background A simple language model Estimating LMs Smoothing

# A simple LM

A first attempt at a LM:

- List all possible sentences we want to consider.
- Assign each sentence a probability.
- Make sure that all probabilities sum to one (etc).

This is no good:

- Languages are usually thought to be infinite.
  - A list of all sentences is going to be big . . .
- We hardly ever see all possible sentences.
- What happens when we want to partially process them?

Miles Osborne Probabilistic Language Models 3 Miles Osborne

A second attempt at a LM:

- Assume a sentence consists of words  $w_1 \dots w_n$ .
- According to the Chain Law:

$$P(w_1, w_2, ..., w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2, w_1)...$$

- Some notation: we call the conditioning sequence of words the history.
- This suggests that we can decompose a sentence probability as a product of smaller probabilities.

Miles Osborne

Probabilistic Language Models

A simple LM

Making a Markov assumption simplifies the model:

- Instead of considering all previous words when predicting a word, we only consider a shorter history.
- Estimating word probabilities is a lot easier (as we shall see).
- A Markov assumption may actually have a cognitive basis:
  - Does the first word of a sentence have any impact upon predicting the 40<sup>th</sup> word?
- A Markov assumption technically means assuming conditional independence.

The key application of the Chain rule is as follows:

- If predicting the current word is independent of some word in the history, then we can drop it.
- Dropping words simplifies a probability.

#### History Simplification

Suppose the history consists of three words  $w_i, w_{i-1}, w_{i-2}$ . Instead of predicting  $w_{i+1}$  using  $P(w_{i+1} \mid w_i, w_{i-1}, w_{i-2})$ , we can use  $P(w_{i+1} | w_i, w_{i-1})$ 

This is called making a Markov assumption

Miles Osborne

Probabilistic Language Models

A simple language model

A simple LM

A typical Markov assumption uses just the previous two words:

- $P(w_{i+1} \mid w_i, w_{i-1})$ .
- This is called a *trigram* model.
- (When we use just one word, we have a bigram model).
- Big language models can use 8-grams.

Miles Osborne Probabilistic Language Models Miles Osborne Probabilistic Language Models Background A simple language model Estimating LMs Smoothing

## A simple LM

Our trigram LM is now:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 \mid w_1) \prod_{i=3}^n P(w_i \mid w_{i-1}, w_{i-2})$$

Note: to avoid underflow, we typically take logs instead:

$$\log P(w_1, w_2, \dots, w_n) \approx \log P(w_1) + \log P(w_2 \mid w_1) \sum_{i=3}^n \log P(w_i \mid w_{i-1}, w_{i-2})$$

Miles Osborne

Probabilistic Language Models

9

Background
A simple language mode
Estimating LMs
Smoothing

#### A simple LM

We can use the same reasoning for estimating ngram probabilities:

$$P(w_{i+1} \mid w_i, w_{i-1}) = \frac{c(w_{i+1}, w_i, w_{i-1})}{c(w_i, w_{i-1})}$$

- Note:  $c(w_i, w_{i-1}) = \sum_{i} c(w_i, w_i, w_{i-1})$
- Here  $c(\cdot)$  counts the number of times a given ngram occurs.

Background A simple language model Estimating LMs Smoothing

#### A simple LM

Where do the probabilities come from?

- We need to estimate probabilities.
- We use a training set of sentences.
- A simple approach is to *count*:

#### Estimating coin probabilities

- Suppose we have a coin. To estimate the probability of a head, we throw our coin many times and count the number of heads.
- We also count the number of tails.
- The probability of a head is simply the number of heads divided by the total number of flips.

Miles Osborne

Probabilistic Language Models

10

Backgrour A simple language mod Estimating LN Smoothir

## A simple LM

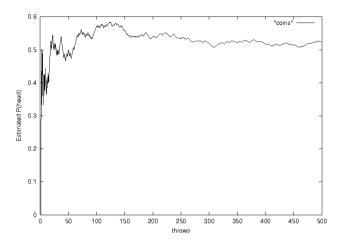
The more often we see a trigram, the more confident we are in the estimated probability:

- If we flipped our coin once, we would estimate the probability of a head as being either 1 or 0 (ouch).
- Flipping a coin more times increases the estimated accuracy.
- The same reasoning applies when estimating trigrams (bigrams etc).

Miles Osborne Probabilistic Language Models 11 Miles Osborne Probabilistic Language Models 12



### A simple LM



Miles Osborne

Probabilistic Language Models

13

Background A simple language model Estimating LMs Smoothing

#### **Smoothing**

If we encounter some word (or word sequence) we never saw, we will assign the entire sentence a probability of zero.

• We may never have seen a laughing cat in our training set:

$$\begin{split} & \text{c(laughed,cat,the)} = 0 \\ & P(\text{laughed} \mid \text{cat,the}) = 0 \\ & P(\text{the, cat, laughed}) = & \dots P(\text{laughed} \mid \text{cat,the}) \\ & = 0 \end{split}$$

This is clearly wrong.

Background A simple language model Estimating LMs Smoothing

## Smoothing

N-gram models can be estimated from trillions of words!

- Manipulating models this large takes serious engineering.
- ... Using ever more data is good, but it will not always help:
  - What happens when we encounter some novel word (sequence)?
  - What happens when we don't see some word sequence very often?

Smoothing refers to the task of improving estimation.

Miles Osborne

Probabilistic Language Models

Backgrour A simple language mod Estimating LN Smoothir

## Smoothing

A simple idea is to pretend we saw *all* possible trigrams once:

$$count(laughed, cat, the) = 1$$
  
 $count(cat, the) = N + M$ 

- Here, *N* was the number of times we actually saw the bigram the cat.
- *M* corresponds to the sum of all the hallucinated single counts.

This is called add-one smoothing.

Miles Osborne Probabilistic Language Models 15 Miles Osborne Probabilistic Language Models

#### Background A simple language model Estimating LMs Smoothing

## Smoothing

Backoff smoothing: instead of using a trigram model, at times use the corresponding *bigram* model (etc):

$$P(w_{i+1} \mid w_i, w_{i-1})^* = \begin{cases} P(w_{i+1} \mid w_i, w_{i-1}) & \text{if } c(w_{i+1}, w_i, w_{i-1}) > 0 \\ P(w_{i+1} \mid w_i)^* & \text{otherwise} \end{cases}$$

- Intuition: short ngrams will be seen more often than longer ones.
- Shorter ngrams are more reliably estimated than longer ones.
- (But, simpler ngrams can be less accurate)

Miles Osborne

Probabilistic Language Models

Background
A simple language mode
Estimating LM:

## Summary

- Probabilistic language models are distributions over sentences.
- The Chain Rule allows for practical modelling.
- Parameters can be estimated by counting.
- Smoothing is vital in practice.

Miles Osborne Probabilistic Language Models