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Joint Distributions

Often, we need to consider the relationship between two or more
events:

@ It is cloudy and raining.
@ A cat purring and being groomed.
@ Noticing adverts on a page, mouse movements and eye gaze.

Joint distributions allow us to reason about the relationship
between multiple events.
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Joint Distributions

Previously, we introduced P(A N B), the probability of the
intersection of the two events A and B.

Let these events be described by the random variables X at value x
and Y at value y. Then we can write:

PANB)=P(X=xNY=y)=PX=x,Y =y)

This is referred to as the joint probability of X = x and Y = y.

Note: often the term joint probability and the notation P(A, B) is
also used for the probability of the intersection of two events.
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Joint Distributions

The notion of the joint probability can be generalised to
distributions:

Definition: Joint Probability Distribution

If X and Y are discrete random variables, the function given by
f(x,y) = P(X = x, Y = y) for each pair of values (x, y) within the
range of X is called the joint probability distribution of X and Y.

Definition: Joint Cumulative Distribution

If X and Y are a discrete random variables, the function given by:

F(X7Y):P(XSX,YSy):ZZf(S,t)for—oo<x,y<oo

s<x t<ly

where f(s, t) is the value of the joint probability distribution of X and Y
at (s, t), is the joint cumulative distribution of X and Y.
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Example: Corpus Data

Assume you have a corpus of a 100 words (a corpus is a collection
of text; see Informatics 1B). You tabulate the words, their
frequencies and probabilities in the corpus:

w c(w) Pw) x vy
the 30 030 3 1
to 18 018 2 1
will 16 016 4 1
of 10 010 2 1
Earth 7 0.07 5 2
on 6 0.06 2 1
probe 4 004 5 2
some 3 0.03 4 2
Comet 3 0.03 5 2
BBC 3 003 3 O©
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Example: Corpus Data

We can now define the following random variables:

@ X: the length of the word;

® Y: number of vowels in the word.
Examples for probability distributions:

@ fx(5) = P(Earth) + P(probe) + P(Comet) = 0.14;

e fy(2) = P(Earth) + P(probe) + P(some) + P(Comet) = 0.17.
Examples for cumulative distributions:

® Fx(3) = fx(2) + fx(3) = 0.34 + 0.33 = 0.67;

@ Fy(1) = fx(0) + fx(1) = 0.03 + 0.80 = 0.83.
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Example: Corpus Data

We can now model the relationship between word length (X) and
number of vowels (Y):
o Let f(x,y) =P(X=x,Y =y).
@ Examples:
o £(2,1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34;
s f(3,0) = P(BBC) = 0.03;
s f(4,3)=0.
Full distribution:

X
2 3 4 5
010 0.03 0 0
y 1,034 030 016 O
0 0 0.03 0.14
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Marginal Distributions

Sometimes, we want to remove the influence of an event:

@ Each experiments measures lots of events, but some are less
reliable than other events.

@ Some events may be irrelevant to some experiment.
@ We may only be interested in a subset of the events.

Marginalisation refers to the process of ‘removing’ the influence of
one or more events from a probability.
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Marginal Distributions

Definition: Marginal Distribution

If X and Y are discrete random variables and f(x, y) is the value of
their joint probability distribution at (x,y), the functions given by:

foy) and h(y foy)

are the marginal distributions of X and Y, respectively.

Here, we have ‘removed’ either x or y.
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Example: Corpus Data

We had defined the following random variables:

@ X: the length of the word;

@ Y': number of vowels in the word.

Joint distribution of X and Y:

X
2 3 4 5
0 0 0.03 0 0
034 030 016 O
0 0 0.03 0.14

<
—
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Example: Corpus Data

We had defined the following random variables:

@ X: the length of the word;

@ Y': number of vowels in the word.

Joint distribution of X and Y:

X
2 3 4 5 Yo f(x,y)

0 0 003 0 0 0.03

y 1 034 030 016 O 0.80

0 0 0.03 0.14 0.17

Marginal distribution of Y.
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We had defined the following random variables:

@ X: the length of the word;

@ Y': number of vowels in the word.

Joint distribution of X and Y:

X
2 3 4 5 Yo f(x,y)
0 0 0.03 0 0 0.03
y 1 034 030 016 O 0.80
2 0 0 0.03 0.14 0.17
>, flxy) | 03 033 019 0.14

Marginal distribution of Y. Marginal distribution of X.
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Conditional Distributions

Sometimes, we know an event has happened already and we want
to model what will happen next:

@ Yahoo's share price is low and Microsoft will buy it.
@ Yahoo's share price is low and Google will buy it.
@ It is cloudy and it might rain.

Conditional probabilities allow us to reason about causality.
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Conditional Distributions

Previously, we defined the conditional probability of two events A

and B as follows:
P(AN B)

P(A)
Let these events be described by the random variable X = x and
Y = y. Then we can write:

P(B|A) =

iy PX=xY=y) flxy)
P ===y =y~ h)

where f(x,y) is the joint probability distribution of X and Y and
h(y) is the marginal marginal distribution of y.
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Conditional Distributions

Definition: Conditional Distribution

If f(x,y) is the value of the joint probability distribution of the
discrete random variables X and Y at (x,y) and h(y) is the value
of the marginal distributions of Y at y, and g(x) is the value of
the marginal distributions of X at x, then:

f(x,y)
h(y)

are the conditional distributions of X given Y =y, and of Y given
X = x, respectively (for h(y) # 0 and g(x) # 0).

f(x,y)
g(x)

and w(y|x) =

fxly) =

-
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Example: Corpus Data

Based on the joint distribution f(x,y) and the marginal
distributions h(y) and g(x) from the previous example, we can
compute the conditional distributions of X given Y = 1:

X
2 3 4 5
) R { €5) I 1 C5) I 1 R
B A A
y 0.80 0.80 0.80 0.80
0.43 0.38 0.20 0
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A key idea is the notion of independence:
@ s a cat purring caused by grooming?
@ Does object recognition depend upon shoe size?

Deciding whether two events are independent of each other is
central for understanding phenomena.
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The notion of independence of events can be generalised to
probability distributions:

Definition: Independence

If f(x,y) is the value of the joint probability distribution of the
discrete random variables X and Y at (x,y), and g(x) and h(y)
are the values of the marginal distributions of X at x and Y at y,
respectively, then X and Y are independent iff:

f(x,y) = g(x)h(y)

for all (x,y) within their range.

Miles Osborne (originally: Frank Keller) Formal Modeling in Cognitive Science



Independence

Example: Corpus Data

Marginal distributions from the previous example:

X
2 3 4 5 h(y)
0/0 003 0 0 0.03
y 1]/034 030 016 0 0.80
20 0 003 014|017
g(x) | 034 033 019 014

Now compute g(x)h(y) for each cell in the table:

2

3

X

4

0| 0.01

0.01

0.01

y 11027 026 0.15
2 |0.06 0.06 0.03

0.00
0.12
0.02

Miles Osborne (originally: Frank Keller)

X and Y are
not independent.
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Independence

Summary

@ A joint probability distribution models the relationship
between two or more events.

@ marginalisations allow us to remove events from distributions.

@ with conditional distributions, we can relate events to each
other.

@ two distributions are independent if the joint distribution is
the same as the product of the two marginal distributions.
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