Formal Modeling in Cognitive Science Joint, Marginal, and Conditional Distributions

Miles Osborne (originally: Frank Keller)

School of Informatics University of Edinburgh miles@inf.ed.ac.uk

February 4, 2008

- < 同 > < 三 > < 三 >

1 Distributions

- Joint Distributions
- Marginal Distributions
- Conditional Distributions

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Joint Distributions

Often, we need to consider the relationship between two or more events:

- It is cloudy and raining.
- A cat purring and being groomed.

• Noticing adverts on a page, mouse movements and eye gaze. *Joint distributions* allow us to reason about the relationship between multiple events.

Joint Distributions

Previously, we introduced $P(A \cap B)$, the *probability of the intersection* of the two events A and B.

Let these events be described by the random variables X at value x and Y at value y. Then we can write:

$$P(A \cap B) = P(X = x \cap Y = y) = P(X = x, Y = y)$$

This is referred to as the *joint probability* of X = x and Y = y.

Note: often the term joint probability and the notation P(A, B) is also used for the probability of the intersection of two events.

Joint Distributions

The notion of the joint probability can be generalised to distributions:

Definition: Joint Probability Distribution

If X and Y are discrete random variables, the function given by f(x, y) = P(X = x, Y = y) for each pair of values (x, y) within the range of X is called the joint probability distribution of X and Y.

Definition: Joint Cumulative Distribution

If X and Y are a discrete random variables, the function given by:

$$F(x,y) = P(X \le x, Y \le y) = \sum_{s \le x} \sum_{t \le y} f(s,t) \text{ for } -\infty < x, y < \infty$$

where f(s, t) is the value of the joint probability distribution of X and Y at (s, t), is the joint cumulative distribution of X and Y.

Distributions Independence Distributions Conditional Distributions

Example: Corpus Data

Assume you have a corpus of a 100 words (a corpus is a collection of text; see Informatics 1B). You tabulate the words, their frequencies and probabilities in the corpus:

W	c(w)	P(w)	X	у
the	30	0.30	3	1
to	18	0.18	2	1
will	16	0.16	4	1
of	10	0.10	2	1
Earth	7	0.07	5	2
on	6	0.06	2	1
probe	4	0.04	5	2
some	3	0.03	4	2
Comet	3	0.03	5	2
BBC	3	0.03	3	0

3

Example: Corpus Data

We can now define the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Examples for probability distributions:

•
$$f_X(5) = P(\text{Earth}) + P(\text{probe}) + P(\text{Comet}) = 0.14;$$

•
$$f_Y(2) = P(\text{Earth}) + P(\text{probe}) + P(\text{some}) + P(\text{Comet}) = 0.17.$$

Examples for cumulative distributions:

•
$$F_X(3) = f_X(2) + f_X(3) = 0.34 + 0.33 = 0.67;$$

•
$$F_Y(1) = f_X(0) + f_X(1) = 0.03 + 0.80 = 0.83.$$

Example: Corpus Data

We can now model the relationship between word length (X) and number of vowels (Y):

- Let f(x, y) = P(X = x, Y = y).
- Examples:
 - f(2,1) = P(to) + P(of) + P(on) = 0.18 + 0.10 + 0.06 = 0.34;• f(2,0) = P(PPC) = 0.02;
 - f(3,0) = P(BBC) = 0.03;

•
$$f(4,3) = 0.$$

Full distribution:

3

Marginal Distributions

Sometimes, we want to remove the influence of an event:

- Each experiments measures lots of events, but some are less reliable than other events.
- Some events may be irrelevant to some experiment.
- We may only be interested in a subset of the events.

Marginalisation refers to the process of 'removing' the influence of one or more events from a probability.

Marginal Distributions

Definition: Marginal Distribution

If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), the functions given by:

$$g(x) = \sum_{y} f(x,y)$$
 and $h(y) = \sum_{x} f(x,y)$

are the marginal distributions of X and Y, respectively.

Here, we have 'removed' either x or y.

Example: Corpus Data

We had defined the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Joint distribution of X and Y:

			j	x		
		2	3	4	5	
	0	0	0.03	0	0	
y	1	0.34	0.30	0.16	0	
	2	0	0	0.03	0.14	

Example: Corpus Data

We had defined the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Joint distribution of X and Y:

			j	x		
		2	3	4	5	$\sum_{x} f(x,y)$
	0	0	0.03	0	0	0.03
y	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17

Marginal distribution of Y.

Example: Corpus Data

We had defined the following random variables:

- X: the length of the word;
- *Y*: number of vowels in the word.

Joint distribution of X and Y:

			;	x		
		2	3	4	5	$\sum_{x} f(x,y)$
	0	0	0.03	0	0	0.03
y	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17
\sum_{y}	f(x,y)	0.34	0.33	0.19	0.14	

Marginal distribution of Y. Marginal distribution of X.

Conditional Distributions

Sometimes, we know an event has happened already and we want to model what will happen next:

- Yahoo's share price is low and Microsoft will buy it.
- Yahoo's share price is low and Google will buy it.
- It is cloudy and it might rain.

Conditional probabilities allow us to reason about causality.

Conditional Distributions

Previously, we defined the *conditional probability* of two events A and B as follows:

$$P(B|A) = rac{P(A \cap B)}{P(A)}$$

Let these events be described by the random variable X = x and Y = y. Then we can write:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{h(y)}$$

where f(x, y) is the joint probability distribution of X and Y and h(y) is the marginal marginal distribution of y.

Conditional Distributions

Definition: Conditional Distribution

If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y) and h(y) is the value of the marginal distributions of Y at y, and g(x) is the value of the marginal distributions of X at x, then:

$$f(x|y) = \frac{f(x,y)}{h(y)}$$
 and $w(y|x) = \frac{f(x,y)}{g(x)}$

are the conditional distributions of X given Y = y, and of Y given X = x, respectively (for $h(y) \neq 0$ and $g(x) \neq 0$).

Example: Corpus Data

Based on the joint distribution f(x, y) and the marginal distributions h(y) and g(x) from the previous example, we can compute the conditional distributions of X given Y = 1:

A key idea is the notion of *independence*:

- Is a cat purring caused by grooming?
- Does object recognition depend upon shoe size?

Deciding whether two events are independent of each other is central for understanding phenomena.

A (10) > A (10) > A

Independence

The notion of *independence* of events can be generalised to probability distributions:

Definition: Independence

If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y), and g(x) and h(y) are the values of the marginal distributions of X at x and Y at y, respectively, then X and Y are independent iff:

$$f(x,y) = g(x)h(y)$$

for all (x, y) within their range.

Example: Corpus Data

Marginal distributions from the previous example:

			,	K		
		2	3	4	5	h(y)
	0	0	0.03	0	0	0.03
у	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17
g(x)	0.34	0.33	0.19	0.14	

Now compute g(x)h(y) for each cell in the table:

			,	x	
		2	3	4	5
	0	0.01	0.01	0.01	0.00
y	1	0.27	0.26	0.15	0.12
	2	0.06	0.06	0.03	0.02

Miles Osborne (originally: Frank Keller)

Formal Modeling in Cognitive Science

- A joint probability distribution models the relationship between two or more events.
- marginalisations allow us to remove events from distributions.
- with conditional distributions, we can relate events to each other.
- two distributions are independent if the joint distribution is the same as the product of the two marginal distributions.