Formal Modeling in Cognitive Science
 Joint, Marginal, and Conditional Distributions

Miles Osborne (originally: Frank Keller)

School of Informatics
University of Edinburgh
miles@inf.ed.ac.uk
February 4, 2008
(1) Distributions

- Joint Distributions
- Marginal Distributions
- Conditional Distributions
(2) Independence

$\left.$| | Distributions
 Independence |
| :--- | :--- | | Joint Distributions |
| :--- |
| Marginal Distrutions |
| Conditional Distributions | \right\rvert\,

Often, we need to consider the relationship between two or more events:

- It is cloudy and raining.
- A cat purring and being groomed.
- Noticing adverts on a page, mouse movements and eye gaze.

Joint distributions allow us to reason about the relationship between multiple events.

Previously, we introduced $P(A \cap B)$, the probability of the intersection of the two events A and B.
Let these events be described by the random variables X at value x and Y at value y. Then we can write:

$$
P(A \cap B)=P(X=x \cap Y=y)=P(X=x, Y=y)
$$

This is referred to as the joint probability of $X=x$ and $Y=y$.
Note: often the term joint probability and the notation $P(A, B)$ is also used for the probability of the intersection of two events.

Joint Distributions

The notion of the joint probability can be generalised to distributions:

Definition: Joint Probability Distribution

If X and Y are discrete random variables, the function given by $f(x, y)=P(X=x, Y=y)$ for each pair of values (x, y) within the range of X is called the joint probability distribution of X and Y.

Definition: Joint Cumulative Distribution

If X and Y are a discrete random variables, the function given by:

$$
F(x, y)=P(X \leq x, Y \leq y)=\sum_{s \leq x} \sum_{t \leq y} f(s, t) \text { for }-\infty<x, y<\infty
$$

where $f(s, t)$ is the value of the joint probability distribution of X and Y at (s, t), is the joint cumulative distribution of X and Y.

Example: Corpus Data

Assume you have a corpus of a 100 words (a corpus is a collection of text; see Informatics 1B). You tabulate the words, their frequencies and probabilities in the corpus:

w	$c(w)$	$P(w)$	x	y
the	30	0.30	3	1
to	18	0.18	2	1
will	16	0.16	4	1
of	10	0.10	2	1
Earth	7	0.07	5	2
on	6	0.06	2	1
probe	4	0.04	5	2
some	3	0.03	4	2
Comet	3	0.03	5	2
BBC	3	0.03	3	0

Distributions Joint Distributions Marginal Distributions Conditional Distributions
 Example: Corpus Data

We can now model the relationship between word length (X) and number of vowels (Y) :

- Let $f(x, y)=P(X=x, Y=y)$.
- Examples:
- $f(2,1)=P($ to $)+P($ of $)+P($ on $)=0.18+0.10+0.06=0.34 ;$
- $f(3,0)=P(\mathrm{BBC})=0.03$;
- $f(4,3)=0$.

Full distribution:

		x			
		2	3	4	5
	0	0	0.03	0	0
y	1	0.34	0.30	0.16	0
	2	0	0	0.03	0.14

Sometimes, we want to remove the influence of an event:

- Each experiments measures lots of events, but some are less reliable than other events.
- Some events may be irrelevant to some experiment.
- We may only be interested in a subset of the events.

Marginalisation refers to the process of 'removing' the influence of one or more events from a probability.

Definition: Marginal Distribution

If X and Y are discrete random variables and $f(x, y)$ is the value of their joint probability distribution at (x, y), the functions given by:

$$
g(x)=\sum_{y} f(x, y) \quad \text { and } \quad h(y)=\sum_{x} f(x, y)
$$

are the marginal distributions of X and Y, respectively.
Here, we have 'removed' either x or y.

Distributions Independence	Joint Distributions Marginal Distriutions Conditional Distributions
Example: Corpus Data	

We had defined the following random variables:

- X : the length of the word;
- Y : number of vowels in the word.

Joint distribution of X and Y :

		x				
		2	3	4	5	
y	0	0	0.03	0	0	
	1	0.34	0.30	0.16	0	
	2	0	0	0.03	0.14	

| Distributions | $\begin{array}{l}\text { Joint Distributions } \\ \text { Marginal Distributions }\end{array}$ |
| :--- | :--- | :--- | Marginal Distributions

Conditional Distributions

Example: Corpus Data

We had defined the following random variables:

- X : the length of the word;
- Y : number of vowels in the word.

Joint distribution of X and Y :

		x				
	2	3	4	5	$\sum_{x} f(x, y)$	
y	0	0	0.03	0	0	0.03
	1	0.34	0.30	0.16	0	0.80
	0	0	0.03	0.14	0.17	

Marginal distribution of Y.

Example: Corpus Data

We had defined the following random variables:

- X : the length of the word;
- Y : number of vowels in the word.

Joint distribution of X and Y :

		x				
	2	3	4	5	$\sum_{x} f(x, y)$	
y	0	0	0.03	0	0	0.03
	1	0.34	0.30	0.16	0	0.80
	0	0	0.03	0.14	0.17	
$\sum_{y} f(x, y)$	0.34	0.33	0.19	0.14		

Marginal distribution of Y. Marginal distribution of X.

Sometimes, we know an event has happened already and we want to model what will happen next:

- Yahoo's share price is low and Microsoft will buy it.
- Yahoo's share price is low and Google will buy it.
- It is cloudy and it might rain.

Conditional probabilities allow us to reason about causality.

Previously, we defined the conditional probability of two events A and B as follows:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Let these events be described by the random variable $X=x$ and $Y=y$. Then we can write:

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f(x, y)}{h(y)}
$$

where $f(x, y)$ is the joint probability distribution of X and Y and $h(y)$ is the marginal marginal distribution of y.

Distributions Independence	Joint Distributions Marginal Distribuions Conditional Distributions
Conditional Distributions	

Conditional Distributions

Definition: Conditional Distribution

If $f(x, y)$ is the value of the joint probability distribution of the discrete random variables X and Y at (x, y) and $h(y)$ is the value of the marginal distributions of Y at y, and $g(x)$ is the value of the marginal distributions of X at x, then:

$$
f(x \mid y)=\frac{f(x, y)}{h(y)} \quad \text { and } \quad w(y \mid x)=\frac{f(x, y)}{g(x)}
$$

are the conditional distributions of X given $Y=y$, and of Y given $X=x$, respectively (for $h(y) \neq 0$ and $g(x) \neq 0)$.

Based on the joint distribution $f(x, y)$ and the marginal distributions $h(y)$ and $g(x)$ from the previous example, we can compute the conditional distributions of X given $Y=1$:

A key idea is the notion of independence:

- Is a cat purring caused by grooming?
- Does object recognition depend upon shoe size?

Deciding whether two events are independent of each other is central for understanding phenomena.

Distributions Independence
 Example: Corpus Data

Marginal distributions from the previous example:

		x				
		2	3	4	5	$h(y)$
	0	0	0.03	0	0	0.03
y	1	0.34	0.30	0.16	0	0.80
	2	0	0	0.03	0.14	0.17
	$g(x)$	0.34	0.33	0.19	0.14	

Now compute $g(x) h(y)$ for each cell in the table:

		x			
	2	3	4	5	
		2	0.01	0.01	0.01
y	1	0.00			
	1	0.27	0.26	0.15	0.12
2	0.06	0.06	0.03	0.02	

Miles Osborne (orisinall: Frank Keller) Formal Modeling in Cognitive Science

- A joint probability distribution models the relationship between two or more events.
- marginalisations allow us to remove events from distributions.
- with conditional distributions, we can relate events to each other.
- two distributions are independent if the joint distribution is the same as the product of the two marginal distributions.

