## CFCS

# Expectation and Variance; Chebyshev's Theorem 

# Miles Osborne (originally: Frank Keller) 

School of Informatics<br>University of Edinburgh<br>miles@inf.ed.ac.uk

February 8, 2008
(1) Expectation and Related Concepts

- Expectation
- Mean
- Variance
(2) Chebyshev's Theorem


## Expectation

Much of probability theory comes from gambling. If we bought a lottery ticket, how much would we expect to win on average?

## Example

In a raffle, there are 10,000 tickets. The probability of winning is therefore $\frac{1}{10,000}$ for each ticket. The prize is worth $\$ 4,800$. Hence the expectation per ticket is $\frac{\$ 4,800}{10,000}=\$ 0.48$.

In this example, the expectation can be thought of as the average win per ticket.

## Expectation

This intuition can be formalized as the expected value of a random variable:

## Definition: Expected Value

If $X$ is a discrete random variable and $f(x)$ is the value of its probability distribution at $x$, then the expected value of $X$ is:

$$
E(X)=\sum_{x} x \cdot f(x)
$$

We will only deal with the discrete case here (but the definition can be extended to cover continuous random variables).

## Expectation

## Example

A balanced coin is flipped three times. Let $X$ be the number of heads. Then the probability distribution of $X$ is:

$$
f(x)= \begin{cases}\frac{1}{8} & \text { for } x=0 \\ \frac{3}{8} & \text { for } x=1 \\ \frac{3}{8} & \text { for } x=2 \\ \frac{1}{8} & \text { for } x=3\end{cases}
$$

The expected value of $X$ is:

$$
E(X)=\sum_{x} x \cdot f(x)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2}
$$

## Expectation

The notion of expectation can be generalized to cases in which a function $g(X)$ is applied to a random variable $X$.

## Theorem: Expected Value of a Function

If $X$ is a discrete random variable and $f(x)$ is the value of its probability distribution at $x$, then the expected value of $g(X)$ is:

$$
E[g(X)]=\sum_{x} g(x) f(x)
$$

## Expectation

## Example

Let $X$ be the number of points rolled with a balanced die. Find the expected value of $X$ and of $g(X)=2 X^{2}+1$.
The probability distribution for $X$ is $f(x)=\frac{1}{6}$. Therefore:

$$
\begin{gathered}
E(X)=\sum_{x} x \cdot f(x)=\sum_{x=1}^{6} x \cdot \frac{1}{6}=\frac{21}{6} \\
E[g(X)]=\sum_{x} g(x) f(x)=\sum_{x=1}^{6}\left(2 x^{2}+1\right) \frac{1}{6}=\frac{94}{6}
\end{gathered}
$$

## Mean

The expectation of a random variable is also called the mean of the random variable. It's denoted by $\mu$.

## Definition: Mean

If $X$ is a discrete random variable and $f(x)$ is the value of its probability distribution at $x$, then the mean of $X$ is:

$$
\mu=E(X)=\sum_{x} x \cdot f(x)
$$

Intuitively, $\mu$ denotes the average value of $X$.

## Mean

Histogram with mean for the distribution in the previous example (number of heads in three coin flips):


## Variance

## Definition: Variance

If $X$ is a discrete random variable and $f(x)$ is the value of its probability distribution at $x$, and $\mu$ is its mean then:

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x)
$$

is the variance of $X$.
Intuitively, $\operatorname{var}(X)$ reflects the spread or dispersion of a distribution, i.e., how much it diverges from the mean. $\sigma$ is called the standard deviation of $X$.

## Variance

## Example

Let $X$ be a discrete random variable with the distribution:

$$
f(x)= \begin{cases}\frac{1}{8} & \text { for } x=0 \\ \frac{3}{8} & \text { for } x=1 \\ \frac{3}{8} & \text { for } x=2 \\ \frac{1}{8} & \text { for } x=3\end{cases}
$$

Then the variance and standard deviation of $X$ are:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{x}(x-\mu)^{2} f(x) \\
& =\left(0-\frac{3}{2}\right)^{2} \cdot \frac{1}{8}+\left(1-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(2-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(3-\frac{3}{2}\right)^{2} \cdot \frac{1}{8} \\
& =0.86 \\
\sigma & =\sqrt{\operatorname{var}(X)}=0.93
\end{aligned}
$$

## Variance

Histogram with mean and standard deviation for the previous example:


## Dispersion

$\sigma^{2}$ as a measure of dispersion:


## Dispersion

$\sigma^{2}$ as a measure of dispersion:


## Chebyshev's Theorem

## Chebyshev's Theorem

If $\mu$ and $\sigma$ are the mean and the standard deviation of a random variable $X$, and $\sigma \neq 0$, then for any positive constant $k$ :

$$
P(|x-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

In other words, the probability that $X$ will take on a value within $k$ standard deviations of the mean is at least $1-\frac{1}{k^{2}}$.

## Example

Assume $k=2$. Then $P(|x-\mu|<2 \sigma)=1-\frac{1}{2^{2}}=\frac{3}{4}$, i.e., at least $75 \%$ of the values of $X$ fall within 2 standard deviations of the mean.

## Chebyshev's Theorem

Example: distribution with $\mu=4.99$ and $\sigma=3.13$.


## Chebyshev's Theorem

## Example

Using Chebyshev's Theorem, we can show: if $X$ is normally distributed, then:

$$
P(|x-\mu|<2 \sigma)=.9544
$$

In other words, the $95.44 \%$ of all values of $X$ fall within 2 standard deviations of the mean. This is a tighter than the bound of $75 \%$ that holds for an arbitrary distribution.
Many cognitive variables (e.g., IQ measurements) are normally distributed. More on this in the next lecture.

## Chebyshev's Theorem

Example: normal distribution with $\mu=0$ and $\sigma=1$.


## Summary

- The expected value of a random variable is its average value over a distribution;
- the mean is the same as the expected value;
- the variance of random variable indicates its dispersion, or spread around the mean;
- Chebyshev's theorem places a bound on the probability that the values of a distribution will be within a certain interval around the mean;
- for example, at least $75 \%$ of all values of a distribution fall within two standard deviations of the mean.

