

Entropy

Kullback-Leibler Divergence

Definition: Kullback-Leibler Divergence

For two probability distributions f(x) and g(x) for a random variable X, the Kullback-Leibler divergence or relative entropy is given as:

$$D(f||g) = \sum_{x \in X} f(x) \log \frac{f(x)}{g(x)}$$

The KL divergence compares the entropy of two distributions over the same random variable.

Intuitively, the KL divergence number of additional bits required when encoding a random variable with a distribution f(x) using the alternative distribution g(x). Kullback-Leibler Divergence

Theorem: Properties of the Kullback-Leibler Divergence
$ D(f g) \ge 0; $
2 $D(f g) = 0$ iff $f(x) = g(x)$ for all $x \in X$;
3 $I(X; Y) = D(f(x, y) f(x)f(y)).$

So the mutual information is the KL divergence between f(x, y) and f(x)f(y). It measures how far a distribution is from independence.

- 24

Kullback-Leibler Divergence

Kullback-Leibler Divergence

Example

For a random variable $X = \{0, 1\}$ assume two distributions f(x)and g(x) with f(0) = 1 - r, f(1) = r and g(0) = 1 - s, g(1) = s:

> $D(f||g) = (1-r)\log \frac{1-r}{1-s} + r\log \frac{r}{s}$ $D(g||f) = (1-s)\log \frac{1-s}{1-r} + s\log \frac{s}{r}$

If
$$r = s$$
 then $D(f||g) = D(g||f) = 0$. If $r = \frac{1}{2}$ and $r = \frac{1}{4}$:

$$D(f||g) = \frac{1}{2}\log\frac{\frac{1}{2}}{\frac{3}{4}} + \frac{1}{2}\log\frac{\frac{1}{2}}{\frac{1}{4}} = 0.2075$$

$$D(g||f) = \frac{3}{4}\log\frac{\frac{3}{4}}{\frac{1}{2}} + \frac{1}{4}\log\frac{\frac{1}{4}}{\frac{1}{2}} = 0.1887$$

Miles Osborne (originally: Frank Keller) CFCS

Kullback-Leibler Divergence Entropy

Entropy and Information Joint Entropy Conditional Entropy

イロト イヨト イヨト イヨト

Entropy and Information

Example: 8-sided die

Suppose you are reporting the result of rolling a fair eight-sided die. What is the entropy?

The probability distribution is $f(x) = \frac{1}{8}$ for x = 1...8. Therefore entropy is:

$$H(X) = -\sum_{x=1}^{8} f(x) \log f(x) = -\sum_{x=1}^{8} \frac{1}{8} \log \frac{1}{8}$$
$$= -\log \frac{1}{8} = \log 8 = 3 \text{ bits}$$

This means the average length of a message required to describe (encode) the outcome of the roll of the die is 3 bits.

Entropy and Information Joint Entropy Conditional Entropy

Entropy and Information

Definition: Entropy

If X is a discrete random variable and f(x) is the value of its probability distribution at x, then the entropy of X is:

$$H(X) = -\sum_{x \in X} f(x) \log_2 f(x)$$

- Entropy is measured in bits (the log is log₂);
- intuitively, it measures amount of information (or uncertainty) in random variable;
- it can also be interpreted as the average length of message to transmit an outcome of the random variable;
- note that $H(X) \ge 0$ by definition.

Miles Osborne (originally: Frank Keller) CFCS

Kullback-Leibler Divergence Entropy

Entropy and Information Joint Entropy Conditional Entropy

Entropy and Information

Example: 8-sided die

Suppose you wish to send the result of rolling the die. What is the most efficient way to encode the message?

The entropy of the random variable is 3 bits. That means the outcome of the random variable can be encoded as 3 digit binary message:

1	2	3	4	5	6	7	8
001	010	011	100	101	110	111	000

★□▶ ★□▶ ★ 注▶ ★ 注▶ 注目 • ○ Q ○

Kullback-Leibler Divergence Entropy

Entropy and Information Joint Entropy Conditional Entropy

Example: simplified Polynesian

Example: simplified Polynesian

Polynesian languages are famous for their small alphabets. Assume a language with the following letters and associated probabilities:

х	р	t	k	а	i	u
f(x)	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

What is the per-character entropy for this language?

$$H(X) = -\sum_{x \in \{p,t,k,a,i,u\}} f(x) \log f(x)$$

= -(4 \log \frac{1}{8} + 2 \log \frac{1}{4}) = 2\frac{1}{2} bits

▲□▶▲圖▶▲圖▶▲圖▶ ■ の

Miles Osborne (originally: Frank Keller)

Kullback-Leibler Divergence Entropy Conditional Entropy

CFCS

Properties of Entropy

Theorem: Entropy

If X is a binary random variable with the distribution f(0) = p and f(1) = 1 - p, then:

•
$$H(X) = 0$$
 if $p = 0$ or $p = 1$

• max
$$H(X)$$
 for $p = \frac{1}{2}$

Intuitively, an entropy of 0 means that the outcome of the random variable is determinate; it contains no information (or uncertainty).

If both outcomes are equally likely $(p = \frac{1}{2})$, then we have maximal uncertainty.

Entropy and Information Joint Entropy Conditional Entropy

Example: simplified Polynesian

Example: simplified Polynesian

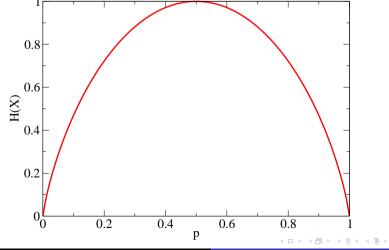
Now let's design a code that takes $2\frac{1}{2}$ bits to transmit a letter:

р	t	k	а	i	u
100	00	101	01	110	111

Any code is suitable, as long as it uses two digits to encode the high probability letters, and three digits to encode the low probability letters.

イロトイクトイミトイミト ヨークスペ Miles Osborne (originally: Frank Keller) CFCS 10

Visualize the content of the previous theorem:



-2

Kullback-Leibler Divergence Entropy

Entropy and Information Joint Entropy Conditional Entropy

Joint Entropy

Definition: Joint Entropy

If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), then the joint entropy of X and Y is:

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} f(x,y) \log f(x,y)$$

The joint entropy represents the amount of information needed on average to specify the value of two discrete random variables.

Example: simplified Polynesian

Now assume that you have the joint probability of a vowel and a consonant occurring together in the same syllable:

f(x,y)	р	t	k	f(y)
а	$\frac{1}{16}$	3 8	$\frac{1}{16}$	$\frac{1}{2}$
i	$\frac{1}{16}$	$\frac{3}{16}$	0	$\frac{1}{4}$
u	0	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
f(x)	$\frac{1}{8}$	<u>3</u> 4	$\frac{1}{8}$	

Compute the conditional probabilities; for example:

$$f(a|p) = \frac{f(a,p)}{f(p)} = \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}$$
$$f(a|t) = \frac{f(a,t)}{f(t)} = \frac{\frac{3}{8}}{\frac{3}{4}} = \frac{1}{2}$$

Joint Entropy Conditional Entropy

Conditional Entropy

Definition: Conditional Entropy

If X and Y are discrete random variables and f(x, y) and f(y|x) are the values of their joint and conditional probability distributions, then:

$$H(Y|X) = -\sum_{x \in X} \sum_{y \in Y} f(x, y) \log f(y|x)$$

is the conditional entropy of Y given X.

The conditional entropy indicates how much extra information you still need to supply on average to communicate Y given that the other party knows X.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Kullback-Leibler Divergence Entropy

ce Entropy and Information Joint Entropy Py Conditional Entropy

Conditional Entropy

Example: simplified Polynesian

Miles Osborne (originally: Frank Keller)

Now compute the conditional entropy of a vowel given a consonant:

$$\begin{split} H(V|C) &= -\sum_{x \in C} \sum_{y \in V} f(x, y) \log f(y|x) \\ &= -(f(a, p) \log f(a|p) + f(a, t) \log f(a|t) + f(a, k) \log f(a|k) + \\ f(i, p) \log f(i|p) + f(i, t) \log f(i|t) + f(i, k) \log f(i|k) + \\ f(u, p) \log f(u|p) + f(u, t) \log f(u|t) + f(u, k) \log f(u|k)) \\ &= -(\frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{8}} + \frac{3}{8} \log \frac{\frac{3}{4}}{\frac{3}{4}} + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{8}} + \\ \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{8}} + \frac{3}{16} \log \frac{\frac{3}{16}}{\frac{5}{4}} + 0 + \\ 0 + \frac{3}{16} \log \frac{\frac{3}{16}}{\frac{3}{4}} + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{8}}) \\ &= \frac{11}{18} = 1.375 \text{ bits} \end{split}$$

CFCS

16

(日) (四) (日) (日) (日)

Miles Osborne (originally: Frank Keller) CFCS

3

Kullback-Leibler Divergence Entropy

Joint Entropy Conditional Entropy

Conditional Entropy

Summary

For probability distributions we defined:

$$f(y|x) = \frac{f(x,y)}{g(x)}$$

A similar theorem holds for entropy:

Theorem: Conditional Entropy

If X and Y are discrete random variables with joint entropy H(X, Y) and the marginal entropy of X is H(X), then:

H(Y|X) = H(X, Y) - H(X)

Division instead of subtraction as entropy is defined on logarithms.

	<日><四><四><日><日<	≣ ୬۹୯
Miles Osborne (originally: Frank Keller)	CFCS	17
Kullback-Leibler Divergence Entropy	Entropy and Information Joint Entropy Conditional Entropy	

• the Kullback-Leibler divergence is the distance between two distributions (the cost of encoding f(x) through g(x)).

- Entropy measures the amount of information in a random variable or the length of the message required to transmit the outcome;
- joint entropy is the amount of information in two (or more) random variables;
- conditional entropy is the amount of information in one random variable given we already know the other.

Joint Entropy Conditional Entropy

Conditional Entropy

Example: simplified Polynesian

Use the previous theorem to compute the joint entropy of a consonant and a vowel. First compute H(C):

$$H(C) = -\sum_{x \in C} f(x) \log f(x)$$

= -(f(p) log f(p) + f(t) log f(t) + f(k) log f(k))
= -(\frac{1}{8} \log \frac{1}{8} + \frac{3}{4} \log \frac{3}{4} + \frac{1}{8} \log \frac{1}{8})
= 1.061 bits

Then we can compute the joint entropy as:

$$H(V, C) = H(V|C) + H(C) = 1.375 + 1.061 = 2.436$$
 bits

Miles Osborne (originally: Frank Keller) CFCS

<ロト < 部 ・ (目) ・ (目) ・ (目) の () ・ 18

19

(日) (部) (E) (E) (E)