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Kullback-Leibler Divergence

Definition: Kullback-Leibler Divergence

For two probability distributions f (x) and g(x) for a random
variable X , the Kullback-Leibler divergence or relative entropy is
given as:

D(f ||g) =
∑

x∈X

f (x) log
f (x)

g(x)

The KL divergence compares the entropy of two distributions over
the same random variable.

Intuitively, the KL divergence number of additional bits required
when encoding a random variable with a distribution f (x) using
the alternative distribution g(x).
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Theorem: Properties of the Kullback-Leibler Divergence

1 D(f ||g) ≥ 0;

2 D(f ||g) = 0 iff f (x) = g(x) for all x ∈ X ;

3 D(f ||g) 6= D(g ||f );

4 I (X ; Y ) = D(f (x , y)||f (x)f (y)).

So the mutual information is the KL divergence between f (x , y)
and f (x)f (y). It measures how far a distribution is from
independence.
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Example

For a random variable X = {0, 1} assume two distributions f (x)
and g(x) with f (0) = 1 − r , f (1) = r and g(0) = 1 − s, g(1) = s:

D(f ||g) = (1 − r) log 1−r
1−s

+ r log r
s

D(g ||f ) = (1 − s) log 1−s
1−r

+ s log s
r

If r = s then D(f ||g) = D(g ||f ) = 0. If r = 1
2

and r = 1
4
:

D(f ||g) = 1
2
log

1
2
3
4

+ 1
2
log

1
2
1
4

= 0.2075

D(g ||f ) = 3
4
log

3
4
1
2

+ 1
4
log

1
4
1
2

= 0.1887
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Entropy and Information

Definition: Entropy

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the entropy of X is:

H(X ) = −
∑

x∈X

f (x) log2 f (x)

Entropy is measured in bits (the log is log2);

intuitively, it measures amount of information (or uncertainty)
in random variable;

it can also be interpreted as the average length of message to
transmit an outcome of the random variable;

note that H(X ) ≥ 0 by definition.
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Entropy and Information

Example: 8-sided die

Suppose you are reporting the result of rolling a fair
eight-sided die. What is the entropy?

The probability distribution is f (x) = 1
8

for x =
1 . . . 8. Therefore entropy is:

H(X ) = −
8∑

x=1

f (x) log f (x) = −
8∑

x=1

1

8
log

1

8

= − log
1

8
= log 8 = 3 bits

This means the average length of a message required to describe
(encode) the outcome of the roll of the die is 3 bits.
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Entropy and Information

Example: 8-sided die

Suppose you wish to send the result of rolling the die. What is the
most efficient way to encode the message?

The entropy of the random variable is 3 bits. That means the
outcome of the random variable can be encoded as 3 digit binary
message:

1 2 3 4 5 6 7 8
001 010 011 100 101 110 111 000
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Example: simplified Polynesian

Polynesian languages are famous for their small alphabets. Assume
a language with the following letters and associated probabilities:

x p t k a i u
f(x) 1

8
1
4

1
8

1
4

1
8

1
8

What is the per-character entropy for this language?

H(X ) = −
∑

x∈{p,t,k,a,i ,u}

f (x) log f (x)

= −(4 log
1

8
+ 2 log

1

4
) = 2

1

2
bits
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Example: simplified Polynesian

Now let’s design a code that takes 21
2

bits to transmit a letter:

p t k a i u
100 00 101 01 110 111

Any code is suitable, as long as it uses two digits to encode the
high probability letters, and three digits to encode the low
probability letters.
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Properties of Entropy

Theorem: Entropy

If X is a binary random variable with the distribution f (0) = p and
f (1) = 1 − p, then:

H(X ) = 0 if p = 0 or p = 1

max H(X ) for p = 1
2

Intuitively, an entropy of 0 means that the outcome of the random
variable is determinate; it contains no information (or uncertainty).

If both outcomes are equally likely (p = 1
2
), then we have maximal

uncertainty.
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Properties of Entropy

Visualize the content of the previous theorem:

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

H
(X

)
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Definition: Joint Entropy

If X and Y are discrete random variables and f (x , y) is the value
of their joint probability distribution at (x , y), then the joint
entropy of X and Y is:

H(X , Y ) = −
∑

x∈X

∑

y∈Y

f (x , y) log f (x , y)

The joint entropy represents the amount of information needed on
average to specify the value of two discrete random variables.
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Definition: Conditional Entropy

If X and Y are discrete random variables and f (x , y) and f (y |x)
are the values of their joint and conditional probability
distributions, then:

H(Y |X ) = −
∑

x∈X

∑

y∈Y

f (x , y) log f (y |x)

is the conditional entropy of Y given X .

The conditional entropy indicates how much extra information you
still need to supply on average to communicate Y given that the
other party knows X .
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Example: simplified Polynesian

Now assume that you have the joint probability of a vowel and a
consonant occurring together in the same syllable:

f (x , y) p t k f (y)

a 1
16

3
8

1
16

1
2

i 1
16

3
16

0 1
4

u 0 3
16

1
16

1
4

f (x) 1
8

3
4

1
8

Compute the conditional probabilities; for example:

f (a|p) =
f (a, p)

f (p)
=

1
16
1
8

=
1

2

f (a|t) =
f (a, t)

f (t)
=

3
8
3
4

=
1

2
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Conditional Entropy

Example: simplified Polynesian

Now compute the conditional entropy of a vowel given a consonant:

H(V |C ) = −
∑
x∈C

∑
y∈V

f (x , y) log f (y |x)

= −(f (a, p) log f (a|p) + f (a, t) log f (a|t) + f (a, k) log f (a|k)+
f (i , p) log f (i |p) + f (i , t) log f (i |t) + f (i , k) log f (i |k)+
f (u, p) log f (u|p) + f (u, t) log f (u|t) + f (u, k) log f (u|k))

= −( 1
16

log
1
16
1
8

+ 3
8
log

3
8
3
4

+ 1
16

log
1
16
1
8

+

1
16

log
1
16
1
8

+ 3
16

log
3
16
3
4

+ 0+

0 + 3
16

log
3
16
3
4

+ 1
16

log
1
16
1
8

)

= 11
8

= 1.375 bits
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For probability distributions we defined:

f (y |x) =
f (x , y)

g(x)

A similar theorem holds for entropy:

Theorem: Conditional Entropy

If X and Y are discrete random variables with joint entropy
H(X , Y ) and the marginal entropy of X is H(X ), then:

H(Y |X ) = H(X , Y ) − H(X )

Division instead of subtraction as entropy is defined on logarithms.
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Example: simplified Polynesian

Use the previous theorem to compute the joint entropy of a
consonant and a vowel. First compute H(C ):

H(C ) = −
∑

x∈C

f (x) log f (x)

= −(f (p) log f (p) + f (t) log f (t) + f (k) log f (k))

= −(
1

8
log

1

8
+

3

4
log

3

4
+

1

8
log

1

8
)

= 1.061 bits

Then we can compute the joint entropy as:

H(V , C ) = H(V |C ) + H(C ) = 1.375 + 1.061 = 2.436 bits
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Summary

the Kullback-Leibler divergence is the distance between two
distributions (the cost of encoding f (x) through g(x)).

Entropy measures the amount of information in a random
variable or the length of the message required to transmit the
outcome;

joint entropy is the amount of information in two (or more)
random variables;

conditional entropy is the amount of information in one
random variable given we already know the other.
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