CFCS1

Distances

Miles Osborne

School of Informatics
University of Edinburgh
miles@inf.ed.ac.uk
January 14, 2010
(1) Background
(2) Absolute Distance
(3) Cosine Distance

Motivation

We often want to know how close vectors are to each other:

- Which Web page is similar to my query?
- Which person is like to me?
- Which neurons have a similar behaviour to each other?

We can capture these ideas using distances between vectors.

Motivation

Points in Space

Properties of distances

- There are many possible distance metrics.
- A correct distance metric has the following properties:
- $d(x, y) \geq 0$ (Non-negativity)
- $d(x, y)=0$ if and only if $x=y$ (identity)
- $d(x, y)=d(y, x)$ (symmetry)
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality)
- Any set such that these properties holds is called a Metric Space.
- Our cosine distance, over vectors, forms a metric space.
- The absolute value between vectors forms a metric space.
- (Later we will encounter the Kullback-Leibler Divergence, which is not symmetric)

Norms

- We first need an idea of how long a vector a is.
- The length of a vector is written: || a \|

$$
\|\mathbf{a}\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

- Here the vector has components $a_{1}, a_{2}, \ldots a_{n}$.
- This follows from Pythagoras.

Norm Example

Suppose a $=\left[\begin{array}{lll}-3 & 2 & 1\end{array}\right]$
$\sqrt{(9+4+1)}$
|| $\mathbf{a} \|=\sqrt{14}$

Distance

- The distance between two points in space is another vector:

$$
d(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|
$$

- Here we measure the length of the resulting vector.

Note:

- When the two vectors are identical, the distance is 0 .
- The distance is always positive.

Examples

Distance Examples

$$
\begin{aligned}
& d\left(\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right]\right)=1 \\
& d\left(\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]\right)=2 \\
& d\left(\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right]\right)=0
\end{aligned}
$$

Cosine Distance

Suppose we multiply our vectors:

$$
\begin{array}{r}
{\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] * 3=\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right] * 3=\left[\begin{array}{lll}
3 & 9 & 3
\end{array}\right]} \\
d\left(\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right]\right)=1 \\
d\left(\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right],\left[\begin{array}{lll}
3 & 9 & 3
\end{array}\right]\right)=6.7
\end{array}
$$

Our distance metric is sensitive to the absolute values of the components.

Cosine Distance

Cosine Distance

The angle between our two sets of vectors has however remained the same.

- The cosine distance measures the angle between two vectors.
- We can take the angle between two vectors and use that as a distance measure.
First we need to understand dot products.

Cosine Distance -Dot Products

The dot product of two \mathbf{a} and \mathbf{b} vectors is defined as:

$$
\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}
$$

Dot Products Examples

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right]=[1 * 1]+[3 * 3]+[2 * 1]=12} \\
& {\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right] \cdot\left[\begin{array}{lll}
3 & 9 & 3
\end{array}\right]=[3 * 3]+[9 * 9]+[6 * 3]=100}
\end{aligned}
$$

Cosine Distance -Dot Products

Many vector ideas can be expressed using Dot Products:

- Lengths: $\|\mathbf{a}\|=\sqrt{(\mathbf{a} \cdot \mathbf{a}) \text {. }}$
- Distances: $d(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|$.
- Angle (see next).

The properties of Dot Products determines the geometric properties of vectors in R^{n}.

Cosine Distance -Unit Vectors

We are still considering the absolute values of vectors. The unit vector of vector of \mathbf{a} is vector \mathbf{b} :

$$
\begin{array}{r}
\mathbf{b}=\frac{\mathbf{a}}{\|\mathbf{a}\|} \\
\|\mathbf{b}\|=\mathbf{1}
\end{array}
$$

Unit vectors are normalised to have the same length.

Cosine Distance -Bringing it together

The cosine of two vectors \mathbf{a} and \mathbf{b} :

$$
\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot\|\mathbf{b}\|}
$$

Cosine Examples

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 1
\end{array}\right], \theta=0.97} \\
& {\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right]\left[\begin{array}{lll}
3 & 9 & 3
\end{array}\right], \theta=0.97}
\end{aligned}
$$

- We are now taking the dot products of the corresponding unit vectors.
- As expected, the angles (distances) are the same.

Summary

- Distances between vectors are extremely useful.
- We looked at two distances:
- Absolute distance.
- Cosine distance.
- We also introduced the ideas of:
- Norm (length) of a vector.
- A dot product.
- A metric space.

