

Miles Osborne (based upon: Frank Keller)

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 29, 2008

2

<ロ> <回> <回> <回> <回> < 回>

3 N 3

Suppose we want to speak to someone on a telephone:

- Our voice is converted into a sequence of 1s and 0s.
- **2** These 1s and 0s are transmitted over a network.
- Solution At the end, the 1s and 0s are reconstructed into our voice.

Step 1 is called *encoding* and step 3 is called *decoding*.

< ∃ >

A good coding and decoding scheme should have the following properties:

- It should allow us to always recover (most of?) the original data.
 - It needs to be lossless.
 - Mobile phones use lossy encoding.
- It should be efficient.
 - More efficient coding / decoding saves on money / space etc.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Source Codes

Definition: Source Code

A source code C for a random variable X is a mapping from $x \in X$ to $\{0,1\}^*$. Let C(x) denote the code word for x and l(x) denote the length of C(x).

Here, $\{0,1\}^*$ is the set of all finite binary strings (we will only consider binary codes).

Definition: Expected Length

The expected length L(C) of a source code C(x) for a random variable with the probability distribution P(x) is:

$$L(C) = \sum_{x \in X} P(x) I(x)$$

Source Codes

Example

Let X be a random variable with the following distribution and code word assignment:

X	а	b	С	d
P(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$
C(x)	0	10	110	111

The average code length of X is:

$$L(C) = \sum_{x \in X} P(x)I(x) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

3

-∢∃≯

Source Codes

What about compressing data?

- Suppose some event x has a probability of being seen P(x).
- Intuitively, the length of the associated code word I(x) should be proportional to this probability:
 - Highly probable events should have short code words.
 - Infrequent events should have longer code words.

< ∃ >

Source Codes

How can we code according to P(x)?

- We can think of coding as a game of 20 questions.
- Each question has a yes/no answer: is binary.
- A series of questions is then a series of yes/no answers (bits).

Event	Questions	Num (q)	2- (Num q)
а	Yes	1	1/2
b	No Yes	2	1/4
с	No No	2	1/4

This uses whole bits.

∃ >

Source Codes

If we could use fractional bits:

- Each event would be encoded in $-\log P(x)$ bits.
- The average code length is now:

$$L(C) = \sum_{x \in X} P(x) \cdot -logP(x)$$

This is the entropy of a distribution.

< 17 ▶

- ∢ ⊒ →

.∋...>

Properties of Codes

What about ensuring we can always recover the data?

- We need to make sure each code word uniquely corresponds with some event.
- We also want to be able to send multiple code words together:

< 🗇 🕨

- ∢ ⊒ →

.∋...>

Properties of Codes

Definition: Non-singular Code

A code is called non-singular if every $x \in X$ maps into a different string in $\{0,1\}^*$.

- If a code is non-singular, then we can transmit a value of X unambiguously.
- However, what happens if we want to transmit several values of X in a row?
- We could use a special symbol to separate the code words.
- However, this is not an efficient use of the special symbol; instead use *self-punctuating* codes (prefix codes).

(日) (同) (日) (日)

Properties of Codes

Definition: Extension

The extension C^* of a code C is:

$$C^*(x_1x_2\ldots x_n)=C(x_1)C(x_2)\ldots C(x_n)$$

where $C(x_1)C(x_2)...C(x_n)$ indicates the concatenation of the corresponding code words.

Definition: Uniquely Decodable

A code is called uniquely decodable if its extension is non-singular.

- If the code is uniquely decodable, then for each string there is only one source string that produced it;
- However, we have to look at the whole string to do the decoding.

Prefix Codes

Definition: Prefix Code

A code is called a prefix code (instantaneous code) if no code word is a prefix of another code word.

- The coding scheme implicit within $-\log P(x)$ is a prefix code.
- We don't have to wait for the whole string to be able to decode it; the end of a code word can be recognized instantaneously.

-∢ ≣ ▶

Coding Examples

Example

The following table illustrates the different classes of codes:

		Non-singular, not	Uniq. decodable,	
X	Singular	uniq. decodable	not instant.	Instant.
а	0	0	10	0
b	0	010	00	10
с	0	01	11	110
d	0	10	110	111

3

<ロ> <回> <回> <回> <回> < 回>

Summary

- Coding / decoding is motivated by efficient communication.
- Prefix codes connect probabilities with compression.
- Not all coding schemes are prefix codes.
- The entropy of a distribution has a coding interpretation.

< 17 ▶

- ∢ ⊒ →

.∋...>