Computational Foundations of Cognitive Science Lecture 21: Special Distributions and Densities

Frank Keller

School of Informatics
University of Edinburgh
keller@inf.ed.ac.uk

February 23, 2010
(1) Mean and Variance
(2) Special Probability Distributions

- Uniform Distribution
- Binominal Distribution
- Mid-lecture Problem
(3) Special Probability Densities
- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Reading: Freund, Chs. 5.1, 5.2, 5.4, 6.1-6.3, 6.5.

Mean

The mean of a random variable X is its average value, normally denoted by μ.

Definition: Mean

If X is a discrete random variable and $f(x)$ is the value of its probability distribution at x, then the mean of X is:

$$
\mu=\sum_{x} x \cdot f(x)
$$

Mean and variance are expectations of a random variable. This will be discussed in more detail in subsequent lectures.

Variance

Definition: Variance

If X is a discrete random variable and $f(x)$ is the value of its probability distribution at x, and μ is its mean then:

$$
\sigma^{2}=\operatorname{var}(X)=\sum_{x}(x-\mu)^{2} f(x)
$$

is the variance of X.
Intuitively, $\operatorname{var}(X)$ reflects the spread or dispersion of a distribution, i.e., how much it diverges from the mean. σ is called the standard deviation of X.

Variance

Example

Let X be a discrete random variable with the distribution:

$$
f(x)= \begin{cases}\frac{1}{8} & \text { for } x=0 \\ \frac{3}{8} & \text { for } x=1 \\ \frac{3}{8} & \text { for } x=2 \\ \frac{1}{8} & \text { for } x=3\end{cases}
$$

The mean and variance of X are:

$$
\begin{aligned}
\mu & =\sum_{x} x \cdot f(x)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2} \\
\operatorname{var}(X) & =\sum_{x}(x-\mu)^{2} f(x) \\
& =\left(0-\frac{3}{2}\right)^{2} \cdot \frac{1}{8}+\left(1-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(2-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(3-\frac{3}{2}\right)^{2} \cdot \frac{1}{8} \\
& =0.86
\end{aligned}
$$

Variance

Histogram with mean and standard deviation for the previous example:

Uniform Distribution

Definition: Uniform Distribution

A random variable X has a discrete uniform distribution iff its probability distribution is given by:

$$
f(x)=\frac{1}{k} \text { for } x=x_{1}, x_{2}, \ldots, x_{k}
$$

where $x_{i} \neq x_{j}$ when $i \neq j$.
The mean and variance of the uniform distribution are:

$$
\mu=\sum_{i=1}^{k} x_{i} \cdot \frac{1}{k} \quad \sigma^{2}=\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2} \frac{1}{k}
$$

Binominal Distribution

Often we are interested in experiments with repeated trials:

- assume there is a fixed number of trials;
- each of the trial can have two outcomes (e.g., success and failure, head and tail);
- the probability of success and failure is the same for each trial: θ and $1-\theta$;
- the trials are all independent.

Then the probability of getting x successes in n trials in a given order is $\theta^{x}(1-\theta)^{n-x}$. And there are $\binom{n}{x}$ different orders, so the overall probability is $\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$.

Binominal Distribution

Definition: Binomial Distribution

A random variable X has a binominal distribution iff its probability distribution is given by:

$$
b(x ; n, \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \text { for } x=0,1,2, \ldots, n
$$

Example

The probability of getting five heads and seven tail in 12 flips of a balanced coin is:

$$
b\left(5 ; 12, \frac{1}{2}\right)=\binom{12}{5}\left(\frac{1}{2}\right)^{5}\left(1-\frac{1}{2}\right)^{12-5}
$$

Binominal Distribution

Binominal Distribution

If we invert successes and failures (or heads and tails), then the probability stays the same. Therefore:

Theorem: Binomial Distribution

$$
b(x ; n, \theta)=b(n-x ; n, 1-\theta)
$$

Two other important properties of the binomial distribution are:

Theorem: Binomial Distribution

The mean and the variance of the binomial distribution are:

$$
\mu=n \theta \quad \text { and } \quad \sigma^{2}=n \theta(1-\theta)
$$

Mid-lecture Problem

A study found that 80% of all people over 60 years of age wear glasses. If a random sample of 6 people over 60 years of age is selected, what's the probability that:
(1) exactly 4 people will wear glasses;
(2) at most 2 people will wear glasses;
(3) at least 2 people will wear glasses.

Uniform Distribution

Definition: Uniform Distribution

A random variable X has a continuous uniform distribution iff its probability density is given by:

$$
u(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta-\alpha} & \text { for } \alpha<x<\beta \\ 0 & \text { elsewhere }\end{cases}
$$

The mean and variance of the uniform distribution are:

$$
\mu=\frac{\alpha+\beta}{2} \quad \sigma^{2}=\frac{1}{12}(\alpha-\beta)^{2}
$$

Uniform Distribution

Uniform distribution for $\alpha=1$ and $\beta=4$.

Exponential Distribution

Definition: Exponential Distribution

A random variable X has an exponential distribution iff its probability density is given by:

$$
g(x ; \theta)= \begin{cases}\frac{1}{\theta} e^{-x / \theta} & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

The mean and variance of the exponential distribution are:

$$
\mu=\theta \quad \sigma^{2}=\theta^{2}
$$

Exponential Distribution

Exponential distribution for $\theta=\{0.5,1,2,3\}$.

Normal Distribution

Definition: Normal Distribution

A random variable X has a normal distribution iff its probability density is given by:

$$
n(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text { for }-\infty<x<\infty
$$

- Normally distributed random variables are ubiquitous in probability theory;
- many measurements of physical, biological, or cognitive processes yield normally distributed data;
- such data can be modeled using a normal distributions (sometimes using mixtures of several normal distributions).

Mean and Variance

Standard Normal Distribution

Normal Distribution

Definition: Standard Normal Distribution

The normal distribution with $\mu=0$ and $\sigma=1$ is referred to as the standard normal distribution:

$$
n(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Theorem: Standard Normal Distribution

If a random variable X has a normal distribution, then:

$$
\begin{aligned}
P(|x-\mu|<\sigma) & =0.6826 \\
P(|x-\mu|<2 \sigma) & =0.9544
\end{aligned}
$$

This follows from Chebyshev's Theorem (later in this course).

Normal Distribution

Theorem: Z-Scores

If a random variable X has a normal distribution with the mean μ and the standard deviation σ then:

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard normal distribution.
This conversion is often used to make results obtained by different experiments comparable: convert the distributions to Z-scores.

Summary

- The uniform distribution assigns each value the same probability;
- The binomial distributions models an experiment with a fixed number of independent binary trials, each with the same probability;
- The normal distribution models the data generated by measurements of physical, biological, or cognitive processes;
- Z-scores can be used to convert a normal distribution into the standard normal distribution.

