Computational Foundations of Cognitive Science Lecture 20: Discrete and Contiuous Random Variables; Distributions and Densities

Frank Keller
School of Informatics
University of Edinburgh
keller@inf.ed.ac.uk
February 23, 2010

(1) Discrete Random Variables
(2) Distributions

- Probability Distributions
- Mid-lecture Problem
- Cumulative Distributions
(3) Continuous Random Variables
(4) Densities
- Probability Density Functions
- Cumulative Distributions

Reading: Freund, Chs. 3.1-3.4.

Discrete Random Variables

Definition: Random Variable

If S is a sample space with a probability measure and X is a real-valued function defined over the elements of S, then X is called a random variable.

We will denote random variable by capital letters (e.g., X), and their values by lower-case letters (e.g., x).

Example

Given an experiment in which we roll a pair of dice, let the random variable X be the total number of points rolled with the two dice.

For example $X=7$ picks out the set
$\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$.

Discrete Random Variables

This can be illustrated graphically:

$$
\text { die } 2
$$

For each outcome, this graph lists the value of X, and the dotted area corresponds to $X=7$.

Discrete Random Variables

Example

Assume a balanced coin is flipped three times. Let X be the random variable denoting the total number of heads obtained.

Outcome	Probability	x
HHH	$\frac{1}{8}$	3
HHT	$\frac{1}{8}$	2
HTH	$\frac{1}{8}$	2
THH	$\frac{1}{8}$	2

Outcome	Probability	x
TTH	$\frac{1}{8}$	1
THT	$\frac{1}{8}$	1
HTT	$\frac{1}{8}$	1
TTT	$\frac{1}{8}$	0

Hence, $P(X=0)=\frac{1}{8}, P(X=1)=P(X=2)=\frac{3}{8}$,
$P(X=3)=\frac{1}{8}$.

Probability Distributions

Definition: Probability Distribution

If X is a discrete random variable, the function given by $f(x)=P(X=x)$ for each x within the range of X is called the probability distribution of X.

Theorem: Probability Distribution

A function can serve as the probability distribution of a discrete random variable X if and only if its values, $f(x)$, satisfy the conditions:
(1) $f(x) \geq 0$ for each value within its domain;
(2) $\sum_{x} f(x)=1$, where x over all the values within its domain.

Probability Distributions

Example

For the probability function defined in the previous example:

x	$f(x)=P(X=x)$
0	$\frac{1}{8}$
1	$\frac{3}{8}$
2	$\frac{3}{8}$
3	$\frac{1}{8}$

This function can be written more concisely as:

$$
f(x)=\frac{4-|3-2 x|}{8}
$$

Probability Distributions

A probability distribution is often represented as a probability histogram. For the previous example:

Mid-lecture Problem

A balanced coin is tossed four times. Define a random variable X that indicates the number of heads obtained. Find a formula for the probability distribution of X.

Now generalize this formula to n coin tosses.

Cumulative Distribution

In many cases, we're interested in the probability for values $X \leq x$, rather than for $X=x$.

Definition: Cumulative Distribution

If X is a discrete random variable, the function given by:

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t) \text { for }-\infty<x<\infty
$$

where $f(t)$ is the value of the probability distribution of X at t, is the cumulative distribution of X.

Cumulative Distributions

Example

Consider the probability distribution $f(x)=\frac{4-|3-2 x|}{8}$ from the previous example. The values of the cumulative distribution are:

x	$f(x)$	$\mathrm{F}(\mathrm{x})$
0	$\frac{1}{8}$	$\frac{1}{8}$
1	$\frac{3}{8}$	$\frac{4}{8}$
2	$\frac{3}{8}$	$\frac{7}{8}$
3	$\frac{1}{8}$	$\frac{8}{8}$

Note that $F(x)$ is defined for all real values of x :

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{8} & \text { for } 0 \leq x<1 \\ \frac{4}{8} & \text { for } 1 \leq x<2 \\ \frac{7}{8} & \text { for } 2 \leq x<3 \\ \frac{8}{8} & \text { for } x \geq 3\end{cases}
$$

Cumulative Distributions

The cumulative distribution can be graphed; for the previous example:

Cumulative Distributions

Theorem: Cumulative Distributions

The values $F(x)$ of the cumulative distribution of a discrete random variable X satisfies the conditions:
(1) $F(-\infty)=0$ and $F(\infty)=1$;
(2) if $a<b$, then $F(a) \leq F(b)$ for any real numbers a and b.

Example

Consider the example of $F(x)$ on the previous slide:
(1) $F(-\infty)=0$ as $F(0)<0$ by definition; $F(\infty)=1$ as $F(x)=1$ for $x \geq 3$ by definition;
(2) $F(a)<F(b)$ holds for $(0,1),(1,2),(2,3)$ by definition; $F(a)=F(b)$ holds for all other values of a and b.

Continuous Random Variables

We only dealt with discrete (integer-valued) random variables. In many situations, continuous (real-valued) random variables occur.

Examples

The outcomes of real-life experiments are often continuous:

- An experimental subject reacts to a picture by pressing a button (e.g., to indicate if the picture is familiar): the reaction time (in ms) is a continuous random variable.
- An EEG machine measures the electrical brain activity when a subjects reads a word: the current (in $\mu \mathrm{V}$) is a continuous random variable.

Definition of probability distribution and cumulative distribution can be extended to the continuous case.

Probability Density Functions

Extend definitions from discrete to continuous random variables:

- use intervals $a \leq X \leq b$ instead of discrete values $X=x$;
- use integration over intervals instead of summation over discrete values.

Definition: Probability Density Function

A function with values $f(x)$, defined over the set of all real numbers, is called a probability density function (pdf) of the continuous random variable X if and only if:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

for any real constants a and b with $a \leq b$.

Probability Density Functions

Example

Assume a continuous random variable X with the pdf:

$$
f(x)= \begin{cases}e^{-x} & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Compute the probability for the interval $0 \leq X \leq 1$:

$$
\begin{aligned}
P(a \leq X \leq b) & =\int_{a}^{b} f(x) d x=\int_{0}^{1} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{1} \\
& =\left(-e^{-1}\right)-\left(-e^{0}\right)=-\frac{1}{e}+1=0.63
\end{aligned}
$$

Probability Density Functions

Plot the function on the previous slide:

Probability Density Functions

Theorem: Intervals of pdfs

If X is a continuous random variable and a and b are real constants with $a \leq b$, then:

$$
P(a \leq X \leq b)=P(a \leq X<b)=P(a<X \leq b)=P(a<X<b)
$$

Theorem: Valid pdfs

A function can serve as the pdf of a continuous random variable X if its values, $f(x)$, satisfy the conditions:
(1) $f(x) \geq 0$ for each value within its domain;
(2) $\int_{-\infty}^{\infty} f(x) d x=1$.

Probability Density Functions

Example

Assume a random variable X with the pdf $f(x)$ as follows. Is this a valid pdf?

$$
f(x)= \begin{cases}\frac{1}{x^{2}}+\frac{1}{2} & \text { for } 1<x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

$f(x) \geq 0$ is true by definition. To show $\int_{-\infty}^{\infty} f(x) d x=1$, integrate:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{1}^{2} \frac{1}{x^{2}}+\frac{1}{2} d x=-\frac{1}{x}+\left.\frac{1}{2} x\right|_{1} ^{2} \\
& =\left(-\frac{1}{2}+\frac{1}{2} \cdot 2\right)-\left(-\frac{1}{1}+\frac{1}{2} \cdot 1\right)=1
\end{aligned}
$$

Probability Density Functions

Plot the function on the previous slide:

Cumulative Distributions

In analogy with the discrete case, we can define:

Definition: Cumulative Distribution

If X is a continuous random variable and the value of its probability density function at t is $f(t)$, then the function given by:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t \text { for }-\infty<x<\infty
$$

is the cumulative distribution of X.
Intuitively, the cumulative distribution captures the area under the curve defined by $f(t)$ from $-\infty$ to x.

Cumulative Distributions

Example

Assume a continuous random variable X with the pdf:

$$
f(t)= \begin{cases}e^{-t} & \text { for } t>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Integrate for $t>0$:

$$
\begin{aligned}
F(x)=P(X \leq x) & =\int_{-\infty}^{x} f(t) d t=\int_{0}^{x} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{x} \\
& =\left(-e^{-x}\right)-\left(-e^{0}\right)=-e^{-x}+1
\end{aligned}
$$

Therefore the cumulative distribution of X is:

$$
F(x)= \begin{cases}-e^{-x}+1 & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Cumulative Distributions

Theorem: Value of Cumulative Distribution

If $f(x)$ and $F(x)$ are the values of the pdf and the cumulative distribution function of X at x, then:

$$
P(a \leq X \leq b)=F(b)-F(a)
$$

for any real constants a and b with $a \leq b$ and:

$$
f(x)=\frac{d F(x)}{d x}
$$

where the derivative exists.

Cumulative Distributions

Example

Use the theorem on the previous slide to compute the probability $P(0 \leq X \leq 1)$ for $f(t)$:
$P(0 \leq X \leq 1)=F(1)-F(0)=\left(-e^{-1}\right)-\left(-e^{-0}\right)=-\frac{1}{e}+1=0.63$
Also, verify the derivative of $F(x)$:

$$
\frac{d F(x)}{d x}=\frac{d\left(-e^{-x}\right)}{d x}=e^{-x}
$$

Summary

- A random variable picks out a subset of the sample space;
- a probability distribution returns a probability for each value of a random variable;
- a cumulative distribution sums all the values of a probability up to a threshold;
- probability density functions are the probability distributions for continuous random variables;
- cumulative distributions can also be defined for continuous random variables.

