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Discrete Random Variables

Definition: Random Variable

If S is a sample space with a probability measure and X is a
real-valued function defined over the elements of S , then X is
called a random variable.

We will denote random variable by capital letters (e.g., X ), and
their values by lower-case letters (e.g., x).

Example

Given an experiment in which we roll a pair of dice, let the random
variable X be the total number of points rolled with the two dice.

For example X = 7 picks out the set
{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.
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Discrete Random Variables

This can be illustrated graphically:
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die 1

die 2
  7       8        9       10      11       12

6        7        8       9        10      11

 5        6        7       8         9        10

 4         5        6        7       8        9

 3         4        5       6        7        8

 2        3         4       5        6        7

For each outcome, this graph lists the value of X , and the dotted
area corresponds to X = 7.
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Discrete Random Variables

Example

Assume a balanced coin is flipped three times. Let X be the
random variable denoting the total number of heads obtained.

Outcome Probability x

HHH 1
8 3

HHT 1
8 2

HTH 1
8 2

THH 1
8 2

Outcome Probability x

TTH 1
8 1

THT 1
8 1

HTT 1
8 1

TTT 1
8 0

Hence, P(X = 0) = 1
8 , P(X = 1) = P(X = 2) = 3

8 ,
P(X = 3) = 1

8 .
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Probability Distributions

Definition: Probability Distribution

If X is a discrete random variable, the function given by
f (x) = P(X = x) for each x within the range of X is called the
probability distribution of X .

Theorem: Probability Distribution

A function can serve as the probability distribution of a discrete
random variable X if and only if its values, f (x), satisfy the
conditions:

1 f (x) ≥ 0 for each value within its domain;

2
∑

x f (x) = 1, where x over all the values within its domain.
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Probability Distributions

Example

For the probability function defined in the previous example:

x f (x) = P(X = x)

0 1
8

1 3
8

2 3
8

3 1
8

This function can be written more concisely as:

f (x) =
4− |3− 2x |

8
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Probability Distributions

A probability distribution is often represented as a probability
histogram. For the previous example:
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Mid-lecture Problem

A balanced coin is tossed four times. Define a random variable X
that indicates the number of heads obtained. Find a formula for
the probability distribution of X .

Now generalize this formula to n coin tosses.
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Cumulative Distribution

In many cases, we’re interested in the probability for values X ≤ x ,
rather than for X = x .

Definition: Cumulative Distribution

If X is a discrete random variable, the function given by:

F (x) = P(X ≤ x) =
∑
t≤x

f (t) for −∞ < x < ∞

where f (t) is the value of the probability distribution of X at t, is
the cumulative distribution of X .
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Cumulative Distributions

Example

Consider the probability distribution f (x) = 4−|3−2x|
8 from the previous

example. The values of the cumulative distribution are:

x f (x) F(x)
0 1

8
1
8

1 3
8

4
8

2 3
8

7
8

3 1
8

8
8

Note that F (x) is defined for all real values of x :

F (x) =


0 for x < 0
1
8 for 0 ≤ x < 1
4
8 for 1 ≤ x < 2
7
8 for 2 ≤ x < 3
8
8 for x ≥ 3
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Cumulative Distributions

The cumulative distribution can be graphed; for the previous
example:

0 1 2 3 4
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Cumulative Distributions

Theorem: Cumulative Distributions

The values F (x) of the cumulative distribution of a discrete
random variable X satisfies the conditions:

1 F (−∞) = 0 and F (∞) = 1;

2 if a < b, then F (a) ≤ F (b) for any real numbers a and b.

Example

Consider the example of F (x) on the previous slide:

1 F (−∞) = 0 as F (0) < 0 by definition; F (∞) = 1 as
F (x) = 1 for x ≥ 3 by definition;

2 F (a) < F (b) holds for (0, 1), (1, 2), (2, 3) by definition;
F (a) = F (b) holds for all other values of a and b.
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Continuous Random Variables

We only dealt with discrete (integer-valued) random variables. In
many situations, continuous (real-valued) random variables occur.

Examples

The outcomes of real-life experiments are often continuous:

An experimental subject reacts to a picture by pressing a
button (e.g., to indicate if the picture is familiar): the reaction
time (in ms) is a continuous random variable.

An EEG machine measures the electrical brain activity when a
subjects reads a word: the current (in µV) is a continuous
random variable.

Definition of probability distribution and cumulative distribution
can be extended to the continuous case.
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Probability Density Functions

Extend definitions from discrete to continuous random variables:

use intervals a ≤ X ≤ b instead of discrete values X = x ;

use integration over intervals instead of summation over
discrete values.

Definition: Probability Density Function

A function with values f (x), defined over the set of all real
numbers, is called a probability density function (pdf) of the
continuous random variable X if and only if:

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx

for any real constants a and b with a ≤ b.
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Probability Density Functions

Example

Assume a continuous random variable X with the pdf:

f (x) =

{
e−x for x > 0
0 elsewhere

Compute the probability for the interval 0 ≤ X ≤ 1:

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx =

∫ 1

0
e−xdx = −e−x

∣∣1
0

= (−e−1)− (−e0) = −1

e
+ 1 = 0.63
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Probability Density Functions

Plot the function on the previous slide:

3210
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x
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Probability Density Functions

Theorem: Intervals of pdfs

If X is a continuous random variable and a and b are real
constants with a ≤ b, then:

P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a < X < b)

Theorem: Valid pdfs

A function can serve as the pdf of a continuous random variable X
if its values, f (x), satisfy the conditions:

1 f (x) ≥ 0 for each value within its domain;

2
∫∞
−∞ f (x)dx = 1.
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Probability Density Functions

Example

Assume a random variable X with the pdf f (x) as follows. Is this a
valid pdf?

f (x) =

{
1
x2 + 1

2 for 1 < x ≤ 2
0 elsewhere

f (x) ≥ 0 is true by definition. To show
∫∞
−∞ f (x)dx = 1, integrate:∫ ∞

−∞
f (x)dx =

∫ 2

1

1

x2
+

1

2
dx = −1

x
+

1

2
x

∣∣∣∣2
1

= (−1

2
+

1

2
· 2)− (−1

1
+

1

2
· 1) = 1
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Probability Density Functions

Plot the function on the previous slide:
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Cumulative Distributions

In analogy with the discrete case, we can define:

Definition: Cumulative Distribution

If X is a continuous random variable and the value of its
probability density function at t is f (t), then the function given by:

F (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt for −∞ < x < ∞

is the cumulative distribution of X .

Intuitively, the cumulative distribution captures the area under the
curve defined by f (t) from −∞ to x .
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Cumulative Distributions

Example

Assume a continuous random variable X with the pdf:

f (t) =

{
e−t for t > 0
0 elsewhere

Integrate for t > 0:

F (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt =

∫ x

0

e−tdt = −e−t
∣∣x
0

= (−e−x)− (−e0) = −e−x + 1

Therefore the cumulative distribution of X is:

F (x) =

{
−e−x + 1 for x > 0
0 elsewhere
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Cumulative Distributions

Theorem: Value of Cumulative Distribution

If f (x) and F (x) are the values of the pdf and the cumulative
distribution function of X at x , then:

P(a ≤ X ≤ b) = F (b)− F (a)

for any real constants a and b with a ≤ b and:

f (x) =
dF (x)

dx

where the derivative exists.
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Cumulative Distributions

Example

Use the theorem on the previous slide to compute the probability
P(0 ≤ X ≤ 1) for f (t):

P(0 ≤ X ≤ 1) = F (1)−F (0) = (−e−1)−(−e−0) = −1

e
+1 = 0.63

Also, verify the derivative of F (x):

dF (x)

dx
=

d(−e−x)

dx
= e−x
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Summary

A random variable picks out a subset of the sample space;

a probability distribution returns a probability for each value
of a random variable;

a cumulative distribution sums all the values of a probability
up to a threshold;

probability density functions are the probability distributions
for continuous random variables;

cumulative distributions can also be defined for continuous
random variables.
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