Computational Foundations of Cognitive Science

Lecture 19: Conditional Probability, Bayes' Theorem; Bayesian Models of Reasoning

Frank Keller

School of Informatics
University of Edinburgh
University of Edinburgh
keller@inf.ed.ac.uk

February 23, 2010
(1) Conditional Probability and Independence

- Conditional Probability
- Independence
- Mid-lecture Problem
(2) Bayes' Theorem
- Total Probability
- Bayes' TheoremBayesian Models of Reasoning
- Background
- Application to Diagnosis
- Base Rate Neglect

Reading: Freund, Chs. 2.5-2.8.

Conditional Probability

Mid-lecture Problem

Conditional Probability

Definition: Conditional Probability

If A and B are two events in a sample space S, and $P(A) \neq 0$ then the conditional probability of B given A is:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Intuitively, the conditional probability $P(B \mid A)$ is the probability that the event B will occur given that the event A has occurred.

Examples

The probability of having a traffic accident given that it snows: P (accident|snow).
The probability of reading the word amok given that the previous word was run: P (amok|run).

Example

A manufacturer knows that the probability of an order being ready on time is 0.80 , and the probability of an order being ready on time and being delivered on time is 0.72 . What is the probability of an order being delivered on time, given that it is ready on time?
R : order is ready on time; D : order is delivered on time.
$P(R)=0.80, P(R \cap D)=0.72$. Therefore:

$$
P(D \mid R)=\frac{P(R \cap D)}{P(R)}=\frac{0.72}{0.80}=0.90
$$

Conditional Probability

Example

Back to lateralization of language (see last lecture). Let $P(A)=0.15$ be the probability of being left-handed, $P(B)=0.05$ be the probability of language being right-lateralized, and $P(A \cap B)=0.04$.

The probability of language being right-lateralized given that a person is left-handed:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.04}{0.15}=0.267
$$

The probability being left-handed given that language is right-lateralized:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.04}{0.05}=0.80
$$

Conditional Probability and Independence
Bayes Theorem

Bayesian Models of Reasoning | Conditional Probability |
| :--- |
| Independence |
| Mid-lecture Problem |

Example

A coin is flipped three times. Each of the eight outcomes is equally likely. A : head occurs on each of the first two flips, B : tail occurs on the third flip, C : exactly two tails occur in the three flips. Show that A and B are independent, B and C dependent.

$$
\begin{array}{ll}
A=\{H H H, H H T\} & P(A)=\frac{1}{4} \\
B=\{H H T, H T T, T H T, T T T\} & P(B)=\frac{1}{2} \\
C=\{H T T, T H T, T T H\} & P(C)=\frac{3}{8} \\
A \cap B=\{H H T\} & \left.P(A \cap B)=\frac{1}{8}\right\} \\
B \cap C=\{H T T, T H T\} & P(B \cap C)=\frac{1}{4}
\end{array}
$$

$P(A) P(B)=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}=P(A \cap B)$, hence A and B are independent. $P(B) P(C)=\frac{1}{2} \cdot \frac{3}{8}=\frac{3}{16} \neq P(B \cap C)$, hence B and C are dependent.

Mid-lecture Problem

Total Probability

The following figure shows a Venn diagram with probabilities assigned to its various regions. Show that A and B are independent, A and C are independent, B and C are independent, but A, B, and C are not independent.

$B_{1}, B_{2}, \ldots, B_{k}$ form a partition of S if they are pairwise mutually exclusive and if $B_{1} \cup B_{2} \cup \ldots \cup B_{k}=S$.

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

If events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S and $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A in S :

Conditional Probability and Independence Bayes' Theorem Bayesian Models of Reasoning	Total Probabiilty Bayes' Theorem
Bayes' Theorem	

Bayes' Theorem

If $B_{1}, B_{2}, \ldots, B_{k}$ are a partition of S and $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any A in S such that $P(A) \neq 0$:

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

This can be simplified by renaming $B_{r}=B$ and by substituting $P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$ (theorem of total probability):

$$
\begin{aligned}
& \text { Bayes' Theorem (simplified) } \\
& \qquad P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}
\end{aligned}
$$

Example

Reconsider the memory example. What is the probability that an item that is correctly recalled (A) is a picture $\left(B_{3}\right)$?

By Bayes' theorem:

$$
\begin{aligned}
P\left(B_{3} \mid A\right) & =\frac{P\left(B_{3}\right) P\left(A \mid B_{3}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)} \\
& =\frac{0.1 \cdot 0.1}{0.29}=0.0345
\end{aligned}
$$

The process of computing $P(B \mid A)$ from $P(A \mid B)$ is sometimes called Bayesian inversion.

Background

Diagnosi:
Bayesian Models of Reasoning
Base Rate Neglect

Background

Most frequent answer: 95\%

Reasoning: if false-positive rate is 5%, then test will be correct 95% of the time.

Correct answer: 2\%

Reasoning: assume you test 1000 people; the test will be positive in 50 cases (5%), but only one person actually has the disease. Hence the chance that a person with a positive result has the disease is $1 / 50=2 \%$.

Only 12% of subjects give the correct answer.
Mathematics underlying the correct answer: Bayes' Theorem

Let's look at an application of Bayes' theorem to the analysis of cognitive processes. First we need to introduce some data.

Research on human decision making investigates, e.g., how physicians make a medical diagnosis (Casscells et al. 1978):

Example

If a test to detect a disease whose prevalence is $1 / 1000$ has a false-positive rate of 5%, what is the chance that a person found to have a positive result actually has the disease, assuming you know nothing about the person's symptoms or signs?

We need to think about Bayes' theorem slightly differently to apply it to this problem (and the terms have special names now):

Bayes' Theorem (for hypothesis testing)
Given a hypothesis h and data D which bears on the hypothesis:

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

$P(h)$: independent probability of h : prior probability
$P(D)$: independent probability of D
$P(D \mid h)$: conditional probability of D given h : likelihood
$P(h \mid D)$: conditional probability of h given D : posterior probability

In Casscells et al.'s (1978) examples, we have the following:

- h : person tested has the disease;
- \bar{h} : person tested doesn't have the disease;
- D: person tests positive for the disease.

The following probabilities are known:
$P(h)=1 / 1000=0.001 \quad P(\bar{h})=1-P(h)=0.999$
$P(D \mid \bar{h})=5 \%=0.05 \quad P(D \mid h)=1$ (assume perfect test)
Compute the probability of the data (rule of total probability):
$P(D)=P(D \mid h) P(h)+P(D \mid \bar{h}) P(\bar{h})=1 \cdot 0.001+0.05 \cdot 0.999=0.05095$
Compute the probability of correctly detecting the illness:

$$
P(h \mid D)=\frac{P(h) P(D \mid h)}{P(D)}=\frac{0.001 \cdot 1}{0.05095}=0.01963
$$

Baysian Models of Reasoning
Application to Diagnosi
Base Rate Neglect

Base Rate Neglect

Base rate: the probability of the hypothesis being true in the absence of any data (i.e., prior probability).
Base rate neglect: people have a tendency to ignore base rate information (see Casscells et al.'s (1978) experimental results).

- base rate neglect has been demonstrated in a number of experimental situations;
- often presented as a fundamental bias in decision making;
- however, experiments show that subjects use base rates in certain situations;
- it has been argued that base rate neglect is only occurs in artificial or abstract mathematical situations.
- Conditional probability: $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$;
- independence: $P(B \cap A)=P(A) P(B)$.
- rule of total probability: $P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$;
- Bayes' theorem: $P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}$;
- there are many applications of Bayes' theorem in cognitive science (here: medical diagnosis);
- base rate neglect: experimental subjects ignore information about prior probability.

Casscells, W., A. Schoenberger, and T. Grayboys. 1978. Interpretation by physicians of clinical laboratory results. New England Journal of Medicine 299(18):999-1001.
Medin, D. L. and S. M. Edelson. 1988. Problem structure and the use of base-rate information from experience. Journal of Experimental Psychology: General 117(1):68-85.

