Computational Foundations of Cognitive Science

Lecture 15: Convolutions and Kernels

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 23, 2010

Convolutions of Discrete Functions

- Definition
- Convolution of Vectors
- Mid-lecture Problem
- Convolution of Matrices
(2) Convolutions of Continuous Functions
- Definition
- Example: Signal Processing

Definition

Definition: Convolution

If f and g are discrete functions, then $f * g$ is the convolution of f and g and is defined as:

$$
(f * g)(x)=\sum_{u=-\infty}^{+\infty} f(u) g(x-u)
$$

Intuitively, the convolution of two functions represents the amount of overlap between the two functions. The function g is the input, f the kernel of the convolution.

Convolutions are often used for filtering, both in the temporal or frequency domain (one dimensional) and in the spatial domain (two dimensional).

Convolutions of Discrete Functions Convolutions of Continuous Functions

Definition

Convolution of Vectors Mid-lecture Problem
Convolution of Matrices

Definition

Theorem: Properties of Convolution

If f, g, and h are functions and a is a constant, then:

- $f * g=g * f$ (commutativity)
- $f *(g * h)=(f * g) * h$ (associativity)
- $f *(g+h)=(f * g)+(f * h)$ (distributivity)
- $a(f * g)=(a f) * g=f *(a g)$ (associativity with scalar multiplication)

Note that it doesn't matter if g or f is the kernel, due to commutativity.

Convolution of Vectors

If a function f ranges over a finite set of values $\mathbf{a}=a_{1}, a_{2}, \ldots, a_{n}$ then it can be represented as vector $\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$.

Definition: Convolution of Vectors

If the functions f and g are represented as vectors $\mathbf{a}=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]$, then $f * g$ is a vector $\mathbf{c}=\left[\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{m+n-1}\end{array}\right]$ as follows:

$$
c_{x}=\sum_{u} a_{u} b_{x-u+1}
$$

where u ranges over all legal subscripts for a_{u} and b_{x-u+1}, specifically $u=\max (1, x-n+1) \ldots \min (x, m)$.

Convolution of Matrices

Convolutions of Discrete Functions Convolutions of Continuous Functions

Convolution of Vectors

Example

Assume $\mathbf{a}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$.
$\mathbf{a} * \mathbf{b}=\left[\begin{array}{c}a_{1} b_{1} \\ a_{1} b_{2}+a_{2} b_{1} \\ a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \\ a_{2} b_{3}+a_{3} b_{2} \\ a_{3} b_{3}\end{array}\right]=\left[\begin{array}{c}1 \cdot 0 \\ 1 \cdot 1+0 \cdot 0 \\ 1 \cdot 2+0 \cdot 1+(-1) 0 \\ 0 \cdot 2+(-1) 1 \\ (-1) 2\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ 2 \\ -1 \\ -2\end{array}\right]$.

If we assume that the two vectors \mathbf{a} and \mathbf{b} have the same dimensionality, then the convolution \mathbf{c} is:
$c_{1}=a_{1} b_{1}$
$c_{2}=a_{1} b_{2}+a_{2} b_{1}$
$c_{3}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}$
$c_{n}=a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$
$c_{2 n-1}=a_{n} b_{n}$
Note that the sum for each component only includes those products for which the subscripts are valid.

Convolution of Matrices

We can regard functions of two variables as matrices with $A_{x y}=f(x, y)$, and obtain a matrix definition of convolution.

Definition: Convolution of Matrices

If the functions f and g are represented as the $n \times m$ matrix A and the $k \times I$ matrix B, then $f * g$ is an $(n+k-1) \times(m+I-1)$ matrix C :

$$
c_{x y}=\sum_{u} \sum_{v} a_{u v} b_{x-u+1, y-v+1}
$$

where u and v range over all legal subscripts for $a_{u v}$ and $b_{x-u+1, y-v+1}$.

Note: the treatment of subscripts can vary from implementation to implementation, and affects the size of C (this is parameterizable in Matlab, see documentation of conv2 function)

Convolutions of Discrete Functions Convolutions of Continuous Functions
onvolution of Vectors
Convolution of Matrices

Convolution of Matrices

Example

Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ and $B=\left[\begin{array}{lllll}b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45}\end{array}\right]$
Then for $C=A * B$, the entry $c_{33}=a_{11} b_{33}+a_{12} b_{32}+a_{13} b_{31}+$ $a_{21} b_{23}+a_{22} b_{22}+a_{23} b_{21}+a_{31} b_{13}+a_{32} b_{12}+a_{33} b_{11}$.

Here, B could represent an image, and A could represent a kernel performing an image operation, for instance.

Convolution of Vectors
Mid-lecture Problem
Convolution of Matrices

Example: Image Processing
Convolving and image with a kernel (typically a 3×3 matrix) is a powerful tool for image processing.

$K=\left[\begin{array}{lll}1 / 9 & 1 / 9 & 1 / 9 \\ 1 / 9 & 1 / 9 & 1 / 9 \\ 1 / 9 & 1 / 9 & 1 / 9\end{array}\right]$ implements a mean filter which smooths an
image by replacing each pixel value with the mean of its neighbors.

Example: Image Processing

The kernel $K=\left[\begin{array}{lll}1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1\end{array}\right]$ implements the Sobel edge detector. It detects gradients in the pixel values (sudden changes in brightness), which correspond to edges. The example is for vertical edges.

Definition

 Example: Signal Processing
Definition

Example

Assume the following step functions:
$g(x)=\left\{\begin{array}{ll}3 & \text { if } 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{array} \quad f(x)= \begin{cases}\frac{1}{2} & \text { if }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}\right.$
If we integrate $g(x)$, we get: $G(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 3 x & \text { if } 0 \leq x \leq 4 \\ 12 & \text { if } x>4\end{cases}$
Then the convolution $f * g$ is:
$(f * g)(x)=\int_{-\infty}^{+\infty} f(u) g(x-u) d u=\frac{1}{2} \int_{-1}^{1} g(x-u) d u=$
$-\frac{1}{2} \int_{x+1}^{x-1} g(u) d u=-\frac{1}{2}(G(x-1)-G(x+1))=$

$$
\begin{cases}\frac{3}{2}(x+1) & \text { if }-1 \leq x<1 \\ 3 & \text { if } 1 \leq x \leq 3 \\ -\frac{3}{2}(x-1)+6 & \text { if } 3<x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

Convolutions of Continuous Functions

Definition
Example: Signal Processing

Definition

Function $g(x)$ (blue) and convolution $f * g(x)$ (green):

Example: Signal Processing
Original intensity function $I(x)$:

Gaussian function $G(x)$:

Smoothed function obtained by convolution with a Gaussian kernel:

Summary

- The convolution $(f * g)(x)=\sum f(u) g(x-u)$ represents the overlap between a discrete function g and a kernel f;
- convolutions in one dimension can be represented as vectors, convolutions in two dimensions as matrices;
- in image processing, two dimensional convolution can be used to filter an image or for edge detection;
- for continuous functions, convolution is defined as $(f * g)(x)=\int f(u) g(x-u) d u$;
- this can be used in signal processing, e.g., to smooth a signal.

