Computational Foundations of Cognitive Science Lecture 13: Determinants and Eigenvectors

February 23, 2010

Determinants

- Determinants for 2 × 2 and 3 × 3 Matrices
- General Determinants
- Determinants of Matrices with Special Form

2 Eigenvalues and Eigenvectors

- Definition
- Mid-lecture Problem
- Triangular Matrices
- 2 × 2 Matrices

Reading: Anton and Busby, Chs. 4.1, 4.4

000 \$ (\$) (\$) (\$) (\$) Frank Keller Computational Foundations of Cognitive Science

Determinants Eigenvalues and Eigenvectors

Determinants for 2 × 2 and 3 × 3 Matrices

Determinants for 2×2 and 3×3 Matrices

Determinants determine if a matrix is invertible (Lecture 12). They are also important for eigenvectors. Recall:

Definition: Determinant of a 2×2 Matrix

The determinant of a 2×2 matrix A is given by: $\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$

We can extend this to 3 x 3 matrices:

Definition: Determinant of a 3×3 Matrix

```
The determinant of a 3 \times 3 matrix A is given by:
               a11 a12 a13
det(A) = \begin{vmatrix} a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
               a31 a32 a33
 -a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}
```

Determinants for 2 × 2 and 3 × 3 Matrices Determinants Eigenvalues and Eigenvectors

Frank Keller

Computational Foundations of Cognitive Science

(D) (#) (2) (2) 2 000

Determinants for 2×2 and 3×3 Matrices

The following diagrams make these formulae easier to remember: the determinant consists of the products obtained by following the arrows, with the appropriate sign:

Example

Determinants for 2 × 2 and 3 × 3 Matrices General Determinants Determinants of Matrices with Special Form

Geometric Interpretation of Determinants

Theorem: Geometric Interpretation of Determinants

If A is a 2×2 matrix, then abs(det(A)) represents the area of the parallelogram determined by the two column vectors of A when they are positioned so their initial points coincide.

Note: abs(x) is the absolute value of x.

Determinants Eigenvalues and Eigenvectors Determinants for 2 × 2 and 3 × 3 Matrices General Determinants

General Determinants

Definition: Determinant

The determinant of a square matrix A is denoted by det(A) and is defined to be sum of all elementary products from A: $\det(A) = \sum \pm a_{1j_1}a_{2j_1}\cdots a_{nj_n}$

Computing determinants based on this definition is computationally intractable for large n, as the number of permutations is:

 $n! = n(n-1)(n-2)\cdots 1$

This figure grows very quickly: $3!=6,\,4!=24,\,5!=120,$ 10!=3,628,800. More efficient algorithms are available, and are used in computational tools such as Matlab.

> (四) (注) (注) (注) (注) (2) (0)

General Determinants

This method only works for 2×2 and 3×3 matrices. For larger matrices, we need a more general definition.

An *elementary product* from an $n \times n$ matrix A is a product of n entries from A, where no two come from the same row or column:

 $\pm a_{1j_1}a_{2j_2}\cdots a_{nj_n}$

Here, the column indices $\{j_1, j_2, \ldots, j_n\}$ form a permutation of the integers from 1 to n.

The sign of the elementary product is based on the minimum number of interchanges required to put the permutation in natural order. If it is even, then the sign is +, if it is odd, then -.

Frank Keller Computational Foundations of Cognitive Science

000 (D) (2) (2) 2 000

Determinants Eigenvalues and Eigenvectors

Determinants for 2 × 2 and 3 × 3 Matrices General Determinants Determinants of Matrices with Special Form

Determinants of Matrices with Special Form

Theorem: Determinants for Matrices with Zero Rows or Columns

If A is a square matrix with a row or a column of zeros, then det(A) = 0.

Each elementary product has an entry from each row, therefore each product has a factor that is zero, hence the product is zero. So the sum of all elementary products is zero. Same for columns.

Theorem: Determinants for Triangular Matrices

If A is a triangular matrix, then det(A) is the product of the entries on the main diagonal.

The only elementary product that is not zero is $\pm a_{11}a_{22}\cdots a_{nn}$, which is the product of the entries on the main diagonal.

Determinants for 2 × 2 and 3 × 3 Matrices General Determinants Determinants of Matrices with Special Form

Determinants of Matrices with Special Form

Example				
$\begin{vmatrix} -2 & 5 & 7 \\ 0 & 3 & 8 \\ 0 & 0 & 5 \end{vmatrix} = (-2) \cdot 3 \cdot 5 = -30$ $1 \cdot 9(-1)(-2) = 18$	4	9 6	$0 \\ 0 \\ -1 \\ -5$	

A computationally more efficient way of computing an $n \times n$ determinant is *cofactor expansion*, which expresses this determinant in terms of $(n - 1) \times (n - 1)$ determinants.

Cofactor expansion can be applied recursively until we have a set of 2×2 determinants to compute. See Anton and Busby, Ch. 4.1.

Frank Keller Computational Foundations of Cognitive Science

000 \$ (\$) (\$) (\$) \$ OQO

Determinants Eigenvalues and Eigenvectors	Definition Mid-lecture Problem Triangular Matrices 2 × 2 Matrices
Eigenvectors	

Once we have the eigenvalues, we can compute the eigenvectors by solving the equation $A\mathbf{x} = \lambda \mathbf{x}$, equivalent to: $(\lambda I - A)\mathbf{x} = \mathbf{0}$.

Example

For the previous example, the equation $(\lambda I - A)\mathbf{x} = \mathbf{0}$ is: $\begin{bmatrix} \lambda - 1 & -3 \\ -4 & \lambda - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. We substitute $\lambda = -2$ and obtain: $\begin{bmatrix} -3 & -3 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Hence we need to solve the following system of linear equations: $\begin{bmatrix} -3x & + & -3y \\ -4x & -4y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, which yields the solutions the solutions that x = -t and y = t, hence the eigenvector is $\begin{bmatrix} -t \\ t \end{bmatrix}$. The eigenvector for $\lambda = 5$ is $\begin{bmatrix} \frac{3}{2} t \\ t \end{bmatrix}$ (details omitted). Definition Mid-lecture Problem Triangular Matrices 2 × 2 Matrices

Eigenvalues

Definition: Eigenvalues and Eigenvectors

If A is an $n \times n$ matrix, then a scalar λ is called an eigenvalue of A if there is a nonzero vector **x** (called eigenvector) such that A**x** = λ **x**.

We compute the eigenvalues of A by solving the *characteristic* equation of A: $det(\lambda I - A) = 0$

Example

To find the eigenvalues of $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$, first compute:	
$\lambda I - A = \lambda \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -3 \\ -4 & \lambda - 2 \end{vmatrix}$. Then the characteristic	
equation is: $\begin{vmatrix} \lambda - 1 & -3 \\ -4 & \lambda -2 \end{vmatrix} = 0$, which yields: $\lambda^2 - 3\lambda - 10 = 0$, which	
has the solutions $\lambda = -2$ and $\lambda = 5$.	,

Frank Keller Computational Foundations of Cognitive Science

Eigenvalues and Eigenvectors

By definition, the eigenvalues and eigenvectors of A make the following equation true: $A\mathbf{x} = \lambda \mathbf{x}$.

We can verify this by substituting x into this equation.

Mid-lecture Problem Triangular Matrices 2 × 2 Matrices

Mid-lecture Problem

 $\begin{array}{l} \text{Suppose } A = \begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix} \text{ is a matrix with the eigenvector } \mathbf{x} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ \text{and the corresponding eigenvalue } \lambda = 4. \text{ Verify that } \lambda^2 = 16 \text{ is an} \\ \text{eigenvalue of } A^2 = AA, \text{ for the same eigenvector.} \end{array}$

Is this a general property? In other words, if λ is an eigenvalue of A, then is λ^2 always an eigenvalue of A^2 ?

Mid-lecture Problem Triangular Matrices

Eigenvectors

Let's use Matlab's eigshow to find the eigenvectors of
$$A = \begin{bmatrix} \frac{3}{4} & 0\\ 0 & \frac{3}{4} \end{bmatrix}$$

Eigenvalues of Triangular Matrices

Frank Keller

If A is a triangular matrix with the diagonal $a_{11}, a_{22}, \ldots, a_{nn}$, then $\lambda I - A$ is triangular with diagonal $\lambda - a_{11}, \lambda - a_{22}, \ldots, \lambda - a_{nn}$. The characteristic polynomial of A is:

 $det(\lambda I - A) = (\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$

which implies that the eigenvalues of A are:

 $\lambda_1 = a_{11}, \lambda_2 = a_{22}, \dots, \lambda_n = a_{nn}$

Theorem: Eigenvalues of Triangular Matrices

If A is a triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

Example: on previous slide.

000 \$ (\$) (\$) (\$) (\$)

Computational Foundations of Cognitive Science

Eigenvalues and Eigenvalues for 2 × 2 Matrices Eigenvalues and 2 × 2 Matrices

The characteristic equation of a 2×2 matrix is:

$$\det(\lambda I - \begin{bmatrix} a & b \\ c & d \end{bmatrix}) =$$

This can be written as:

$$\lambda^2 - tr(A)\lambda + det(A) = 0$$

because we can make the following simplification:

$$\det(\lambda I - \begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{vmatrix} \lambda - a & -b \\ -c & \lambda - d \end{vmatrix} = (\lambda - a)(\lambda - d) - bc = \lambda^2 - (a + d)\lambda + (ad - bc) = \lambda^2 - tr(A)\lambda + \det(A)$$

Mid-lecture Proble Triangular Matrices 2 × 2 Matrices

Eigenvalues of 2×2 Matrices

From algebra we know that a quadratic equation $ax^2 + bx + c = 0$ has two solutions if $b^2 - 4ac > 0$, one solution if $b^2 - 4ac = 0$, and no solutions if $b^2 - 4ac < 0$.

We set a = 1, b = -tr(A), and c = det(A) and obtain:

Theorem: Eigenvalues of 2×2 Matrices

If A is a 2 × 2 matrix, then the characteristic equation of A is $\lambda^2 - tr(A)\lambda + det(A) = 0$ and

- A has two eigenvalues if tr(A)² 4 det(A) > 0
- A has one eigenvalue if tr(A)² 4 det(A) = 0
- A has no eigenvalues if tr(A)² 4 det(A) < 0

Note: in the case of $tr(A)^2 - 4 \det(A) < 0$, A has imaginary eigenvalues. We will ignore this.

	Determinants Eigenvalues and Eigenvectors	Definition Mid-lecture Problem Triangular Matrices 2 × 2 Matrices	
Summary			

- There are formulae for computing determinants for 2 × 2 and 3 × 3 matrices;
- elementary products can be used to compute general determinants (but: very inefficient);
- det(A) = 0 if A has a row or column of zeros;
- det(A) = a₁₁a₂₂ ··· a_{nn} if A is triangular;
- If $A\mathbf{x} = \lambda \mathbf{x}$, then λ is an eigenvalue and \mathbf{x} an eigenvector;
- they can be computed by solving the characteristic equation of A, det(λI – A) = 0;
- the eigenvalues of a triangular matrix are the entries on its diagonal;
- the characteristic equation of a 2 × 2 matrix is $\lambda^2 tr(A)\lambda + det(A) = 0.$

Definition Mid-lecture Problem Triangular Matrices 2 × 2 Matrices

Eigenvalues of 2×2 Matrices

Example

Find the eigenvalues of $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2\\5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1\\1 & 2 \end{bmatrix}.$
We have $tr(A) = 7$ and $det(A) =$	
of A is $\lambda^2 - 7\lambda + 12 = 0$. We solv	
and get: $\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{b^2 - 4ac}}{2a}$	$\frac{(-7)^2-4\cdot 12}{2}$, so $\lambda = 4$ and $\lambda = 3$.
We have $tr(B) = 2$ and $det(B) = 1$ and a characteristic equation	
$\lambda^2 - 2\lambda + 1 = 0$, which yields $\lambda =$	$=\frac{2\pm\sqrt{(-2)^2-4}}{2}=1.$

Frank Keller Computational Foundations of Cognitive Science 18