Computational Foundations of Cognitive Science

Lecture 13: Determinants and Eigenvectors

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 23, 2010

Determinants

- Determinants for 2×2 and 3×3 Matrices
- General Determinants
- Determinants of Matrices with Special Form

Eigenvalues and Eigenvectors

- Definition
- Mid-lecture Problem
- Triangular Matrices
- 2×2 Matrices

Reading: Anton and Busby, Chs. 4.1, 4.4

Determinants for 2×2 and 3×3 Matrices

The following diagrams make these formulae easier to remember: the determinant consists of the products obtained by following the arrows, with the appropriate sign:

Example

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=45+84-96-105-48-(-72)=-48
$$

Geometric Interpretation of Determinants

General Determinants

Theorem: Geometric Interpretation of Determinants

If A is a 2×2 matrix, then $\operatorname{abs}(\operatorname{det}(A))$ represents the area of the parallelogram determined by the two column vectors of A when they are positioned so their initial points coincide.

Note: $\operatorname{abs}(x)$ is the absolute value of x.

Example

parallelogram determined by \mathbf{u} and \mathbf{v} is: $\operatorname{abs}(\operatorname{det}(A))=\operatorname{abs}\left(\left.\begin{array}{ll}2 & 6 \\ 5 & 1\end{array} \right\rvert\,\right)=$ $\operatorname{abs}(-28)=28$.

This method only works for 2×2 and 3×3 matrices. For larger matrices, we need a more general definition.
An elementary product from an $n \times n$ matrix A is a product of n entries from A, where no two come from the same row or column:
$\pm a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}$
Here, the column indices $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ form a permutation of the integers from 1 to n.

The sign of the elementary product is based on the minimum number of interchanges required to put the permutation in natural order. If it is even, then the sign is + , if it is odd, then - .

Determinants of Matrices with Special Form

Theorem: Determinants for Matrices with Zero Rows or Columns

If A is a square matrix with a row or a column of zeros, then $\operatorname{det}(A)=0$.

Each elementary product has an entry from each row, therefore each product has a factor that is zero, hence the product is zero. So the sum of all elementary products is zero. Same for columns.

Theorem: Determinants for Triangular Matrices

If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal.

The only elementary product that is not zero is $\pm a_{11} a_{22} \cdots a_{n n}$, which is the product of the entries on the main diagonal.

Determinants of Matrices with Special Form

Example

$\left|\begin{array}{ccc}-2 & 5 & 7 \\ 0 & 3 & 8 \\ 0 & 0 & 5\end{array}\right|=(-2) \cdot 3 \cdot 5=-30\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 4 & 9 & 0 & 0 \\ -7 & 6 & -1 & 0 \\ 3 & 8 & -5 & -2\end{array}\right|=$
$1 \cdot 9(-1)(-2)=18$
A computationally more efficient way of computing an $n \times n$ determinant is cofactor expansion, which expresses this determinant in terms of $(n-1) \times(n-1)$ determinants.
Cofactor expansion can be applied recursively until we have a set of 2×2 determinants to compute. See Anton and Busby, Ch. 4.1.

Frank Keller

Definition: Eigenvalues and Eigenvectors

If A is an $n \times n$ matrix, then a scalar λ is called an eigenvalue of A if there is a nonzero vector x (called eigenvector) such that $A \mathrm{x}=\lambda \mathbf{x}$.

We compute the eigenvalues of A by solving the characteristic equation of $A: \operatorname{det}(\lambda I-A)=0$

Example

To find the eigenvalues of $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$, first compute:
$\lambda I-A=\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]=\left[\begin{array}{cc}\lambda-1 & -3 \\ -4 & \lambda-2\end{array}\right]$. Then the characteristic equation is: $\left|\begin{array}{cc}\lambda-1 & -3 \\ -4 & \lambda-2\end{array}\right|=0$, which yields: $\lambda^{2}-3 \lambda-10=0$, which has the solutions $\lambda=-2$ and $\lambda=5$.

Eigenvectors

Once we have the eigenvalues, we can compute the eigenvectors by solving the equation $A \mathbf{x}=\lambda \mathbf{x}$, equivalent to: $(\lambda I-A) \mathbf{x}=\mathbf{0}$.

Example

For the previous example, the equation $(\lambda I-A) \mathbf{x}=\mathbf{0}$ is:
$\left[\begin{array}{cc}\lambda-1 & -3 \\ -4 & \lambda-2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. We substitute $\lambda=-2$ and obtain:
$\left[\begin{array}{ll}-3 & -3 \\ -4 & -4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Hence we need to solve the following system of

$x=-t$ and $y=t$, hence the eigenvector is $\left[\begin{array}{c}-t \\ t\end{array}\right]$. The eigenvector for $\lambda=5$ is $\left[\begin{array}{c}\frac{3}{4} t \\ t\end{array}\right]$ (details omitted).

By definition, the eigenvalues and eigenvectors of A make the following equation true: $A \mathbf{x}=\lambda \mathbf{x}$.
We can verify this by substituting x into this equation.

Example

First eigenvector of A :
$A \mathbf{x}=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]\left[\begin{array}{c}-t \\ t\end{array}\right]=\left[\begin{array}{c}2 t \\ -2 t\end{array}\right]=-2\left[\begin{array}{c}-t \\ t\end{array}\right]=-2 \mathbf{x}$
Second eigenvector of A :
$A \mathbf{x}=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]\left[\begin{array}{c}\frac{3}{4} t \\ t\end{array}\right]=\left[\begin{array}{c}15 \\ 4 t \\ 5 t\end{array}\right]=5\left[\begin{array}{c}\frac{3}{4} t \\ t\end{array}\right]=5 \mathbf{x}$

Eigenvectors

Let's use Matlab's eigshow to find the eigenvectors of $A=\left[\begin{array}{ll}\frac{5}{4} & 0 \\ 0 & \frac{3}{4}\end{array}\right]$:

Suppose $A=\left[\begin{array}{cc}2 & 2 \\ -1 & 5\end{array}\right]$ is a matrix with the eigenvector $\mathbf{x}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ and the corresponding eigenvalue $\lambda=4$. Verify that $\lambda^{2}=16$ is an eigenvalue of $A^{2}=A A$, for the same eigenvector.

Is this a general property? In other words, if λ is an eigenvalue of A, then is λ^{2} always an eigenvalue of A^{2} ?

If \mathbf{x} is parallel to $A \mathbf{x}$, then \mathbf{x} is an eigenvector. Here: $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\lambda=\frac{5}{4}$.

Eigenvalues of 2×2 Matrices

The characteristic equation of a 2×2 matrix is:
$\operatorname{det}\left(\lambda I-\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=0$
This can be written as:
$\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$
because we can make the following simplification:
$\operatorname{det}\left(\lambda I-\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left|\begin{array}{cc}\lambda-a & -b \\ -c & \lambda-d\end{array}\right|=(\lambda-a)(\lambda-d)-b c=$
$\lambda^{2}-(a+d) \lambda+(a d-b c)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$

Example: on previous slide.

From algebra we know that a quadratic equation $a x^{2}+b x+c=0$ has two solutions if $b^{2}-4 a c>0$, one solution if $b^{2}-4 a c=0$, and no solutions if $b^{2}-4 a c<0$.

We set $a=1, b=-\operatorname{tr}(A)$, and $c=\operatorname{det}(A)$ and obtain:

Theorem: Eigenvalues of 2×2 Matrices

If A is a 2×2 matrix, then the characteristic equation of A is $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$ and

- A has two eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)>0$
- A has one eigenvalue if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)=0$
- A has no eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)<0$

Note: in the case of $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)<0, A$ has imaginary eigenvalues. We will ignore this.

Summary

- There are formulae for computing determinants for 2×2 and 3×3 matrices;
- elementary products can be used to compute general determinants (but: very inefficient);
- $\operatorname{det}(A)=0$ if A has a row or column of zeros;
- $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$ if A is triangular;
- If $A \mathbf{x}=\lambda \mathbf{x}$, then λ is an eigenvalue and \mathbf{x} an eigenvector;
- they can be computed by solving the characteristic equation of $A, \operatorname{det}(\lambda I-A)=0$;
- the eigenvalues of a triangular matrix are the entries on its diagonal;
- the characteristic equation of a 2×2 matrix is $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$.

