Computational Foundations of Cognitive Science Lecture 12: Inverses; Matrices with Special Forms

Frank Keller

School of Informatics
University of Edinburgh
keller@inf.ed.ac.uk

February 23, 2010
(1) Inverse

- Definition
- Computation
- Properties
(2) Matrices with Special Forms
- Diagonal and Triangular Matrices
- Mid-lecture Problem
- Symmetric Matrices
- Matrices of the form $A A^{T}$ and $A^{T} A$

Reading: Anton and Busby, Chs. 3.2, 3.6

Definition of the Inverse

Every real number a has a reciprocal $a^{-1}=1$ /a such that $a \cdot a^{-1}=1$. The analogue for a matrix A is its inverse A^{-1}.

Definition: Matrix Inverse

If A is a square matrix, and if there is a matrix B with the same size such that $A B=I$, then A is invertible (non-singular), and B is the inverse of A. If there is no such matrix B, then A is singular.

Note that if $A B=I$, then also $B A=I$, i.e., B is also invertible and an inverse of A.

Example

$$
A=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right] \quad A B=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Definition of the Inverse

In general, a square matrix with a row or column of zeros is singular, i.e., it has no inverse.

The row or column of zeros causes the result of matrix multiplication to also have a row or column of zeros, i.e., it can't be I.

Example

Assume $A=\left[\begin{array}{lll}1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0\end{array}\right]=\left[\begin{array}{lll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{0}\end{array}\right]$.
Then apply the definition of matrix multiplication to compute $B A=B\left[\begin{array}{lll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{0}\end{array}\right]=\left[\begin{array}{lll}B \mathbf{c}_{1} & B \mathbf{c}_{2} & \mathbf{0}\end{array}\right]$. This shows that $B A \neq I$.

Definition of the Inverse

Theorem: Uniqueness of the Inverse

If A is an invertible matrix, and if B and C are both inverses of A, then $B=C$, i.e., an invertible matrix has a unique inverse.

The uniqueness of the inverse implies $A A^{-1}=I$ and $A^{-1} A=I$.
Finding the inverse of a matrix is generally non-trivial. However, for 2×2 matrices, there is a simple formula. For this we need the notion of a determinant of a matrix.

Definition: Determinant of a Matrix

The determinant of a 2×2 matrix A is given by:
$\operatorname{det}(A)=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$

Computation of the Inverse

Theorem: Computation of the Inverse

The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible iff $\operatorname{det}(A) \neq 0$, in which case:
$A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\left[\begin{array}{cc}\frac{d}{a d-b c} & -\frac{b}{a d-b c} \\ -\frac{c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$

Examples

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
6 & 1 \\
5 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
-1 & 2 \\
3 & -6
\end{array}\right] \\
& \operatorname{det}(A)=6 \cdot 2-1 \cdot 5=7 \\
& \operatorname{det}(B)=(-1)(-6)-2 \cdot 3=0 \\
& A^{-1}=\frac{1}{7}\left[\begin{array}{cc}
2 & -1 \\
-5 & 6
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{5}{7} & \frac{6}{7}
\end{array}\right]
\end{aligned}
$$

Properties of the Inverse

Theorem: Product of Inverses; Transpose

If A and B are invertible matrices of the same size, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
If A is invertible, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
Example

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right] \quad A B=\left[\begin{array}{ll}
7 & 6 \\
9 & 8
\end{array}\right] \quad(A B)^{-1}=\left[\begin{array}{cc}
4 & -3 \\
-\frac{9}{2} & \frac{7}{2}
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & \frac{3}{2}
\end{array}\right] \quad B^{-1} A^{-1}=\left[\begin{array}{cc}
4 & -3 \\
-\frac{9}{2} & \frac{7}{2}
\end{array}\right]
\end{aligned}
$$

In general, a product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses in the reverse order.

Diagonal Matrices

A square matrix in which all the entries off the main diagonal are zero is a diagonal matrix:
$D=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right]$
A diagonal matrix is invertible iff all the d_{i} are non-zero in which case the inverse is
$D^{-1}=\left[\begin{array}{cccc}1 / d_{1} & 0 & \cdots & 0 \\ 0 & 1 / d_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 / d_{n}\end{array}\right]$

Diagonal Matrices

Matrix products involving diagonal matrices are easy to compute:

Examples

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{lll}
d_{1} a_{11} & d_{1} a_{12} & d_{1} a_{13} \\
d_{2} a_{21} & d_{1} a_{14} a_{22} & d_{2} a_{23} \\
d_{2} a_{24} \\
d_{3} a_{31} & d_{3} a_{32} & d_{3} a_{33}
\end{array} d_{3} a_{34}\right.}
\end{array}\right] .
$$

Example: Representing Images

Let us again represent matrices as greyscale images. Let A be a diagonal matrix with the values $1 \ldots 200$ on the diagonal:

Transposing a diagonal matrix doesn't change it.

Mid-lecture Problem

Indicate whether the following statements are true or false. Justify your answers.
(1) If A is invertible, then so is $I-A$.
(2) If A is a diagonal matrix, then so is $A A^{T}$.
(3) If A and B are diagonal matrices, then $A B=B A$.

Triangular Matrices

A square matrix is triangluar if all entries to the left of the main diagonal are zero (upper triangular), or if all entries to the right of main diagonal are zero (lower triangular). More formally:

- $A=\left[a_{i j}\right]$ is upper triangular iff $a_{i j}=0$ for all $i>j$;
- $A=\left[a_{i j}\right]$ is lower triangular iff $a_{i j}=0$ for all $i<j$.

Matrix can be both upper and lower triangular (e.g., diagonal matrix).

Example

A 4×4 upper and lower triangular matrix has the form:
$\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44}\end{array}\right] \quad\left[\begin{array}{cccc}a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{23} & a_{33} & 0 \\ a_{41} & a_{24} & a_{43} & a_{44}\end{array}\right]$

Triangular Matrices

Theorem: Properties of Triangular Matrices

- The transpose of a lower (upper) triangular matrix is upper (lower) triangular.
- A product of lower (upper) triangular matrices is lower (upper) triangular.
- A triangular matrix is invertible iff its diagonal entries are all non-zero.
- The inverse of a lower (upper) triangular matrix is lower (upper) triangular.

Triangular Matrices

Example

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

A is invertible but B isn't. Also, $A^{-1}, A B$ and $B A$ must be upper triangular:
$A^{-1}=\left[\begin{array}{ccc}1 & -\frac{3}{2} & \frac{7}{5} \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5}\end{array}\right] \quad A B=\left[\begin{array}{ccc}3 & -2 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 5\end{array}\right] \quad B A=\left[\begin{array}{ccc}3 & 5 & -1 \\ 0 & 0 & -5 \\ 0 & 0 & 5\end{array}\right]$

Example: Representing Images

Now let B be an upper triangular matrix with the values $1 \ldots 200$ on the rows 1... 200:

Transposing an upper triangular matrix yields a lower triangular matrix.

Symmetric Matrices

A square matrix A is symmetric if $A^{T}=A$ and skew-symmetric if $A^{T}=-A$. More formally:

- $A=\left[a_{i j}\right]$ symmetric iff $(A)_{i j}=(A)_{j i}$, or equivalently, $a_{i j}=a_{j i}$;
- $A=\left[a_{i j}\right]$ skew-symmetric iff $(A)_{i j}=-(A)_{j i}$, or equivalently, $a_{i j}=-a_{j i}$.

Examples

$$
\left[\begin{array}{cc}
7 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 5 \\
4 & -3 & -6 \\
5 & -6 & 7
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -4 & 5 \\
4 & 0 & -9 \\
-5 & 9 & 0
\end{array}\right]
$$

Symmetric Matrices

Theorem: Properties of Symmetric Matrices

If A and B are symmetric matrices with the same size, and k is a scalar, then:

- A^{T} is symmetric
- $A+B$ and $A-B$ are symmetric
- $k A$ is symmetric
- $A B$ is symmetric iff A and B commute, i.e., iff $A B=B A$
- if A is symmetric and invertible, then A^{-1} is symmetric

Examples

$\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{cc}-4 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}-2 & 1 \\ -5 & 2\end{array}\right] \quad\left[\begin{array}{cc}-4 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}-2 & -5 \\ 1 & 2\end{array}\right]$

Example: Representing Images

We get a symmetric matrix C by adding B and B^{T} :

Transposing a symmetric matrix doesn't change it.

Matrices of the form $A A^{T}$ and $A^{T} A$

If A is an $m \times n$ matrix, then A^{T} is an $n \times m$ matrix, which means that $A A^{T}$ and $A^{T} A$ are square matrices of size $m \times m$ and $n \times n$.
$A A^{T}$ and $A^{T} A$ are always symmetric, since: $\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}$ and $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.

Example

$$
A^{T} A=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\mathbf{a}_{2}^{T} \\
\vdots \\
\mathbf{a}_{n}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{a}_{1}^{T} \mathbf{a}_{1} & \mathbf{a}_{1}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{T} \mathbf{a}_{n} \\
\mathbf{a}_{2}^{T} \mathbf{a}_{1} & \mathbf{a}_{2}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{2}^{T} \mathbf{a}_{n} \\
\vdots & \vdots & & \vdots \\
\mathbf{a}_{n}^{T} \mathbf{a}_{1} & \mathbf{a}_{n}^{T} \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{T} \mathbf{a}_{n}
\end{array}\right]
$$

By definition of the inner product, $\mathbf{a}_{1}^{T} \mathbf{a}_{2}=\mathbf{a}_{1} \cdot \mathbf{a}_{2}=\mathbf{a}_{2} \cdot \mathbf{a}_{1}=\mathbf{a}_{2}^{T} \mathbf{a}_{1}$, hence the matrix is symmetric.

Summary

- The inverse of a matrix A is A^{-1} with $A A^{-1}=I$;
- the determinant of a 2×2 matrix is $\operatorname{det}(A)=a d-b c$;
- $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$;
- diagonal matrix: all entries off the main diagonal are zero;
- triangular matrix: all entries to the left or right of the main diagonal are zero;
- symmetric matrix: $A^{T}=A$;
- $A A^{T}$ and $A^{T} A$ are always symmetric.

