Computational Foundations of Cognitive Science Lecture 11: Matrices in Matlab

Frank Keller

School of Informatics
University of Edinburgh
keller@inf.ed.ac.uk
February 23, 2010
(1) Basic Matrix Operations

- Sum and Difference
- Size; Product with Scalar
(2) Special Matrices
- Zero and Identity Matrix
- Diagonal and Triangular Matrices
- Block Matrices
(3) Matrix Products
- Row and Column Vectors
- Mid-lecture Problem
- Matrix Product
- Product with Vector

4 Transpose, Inner and Outer Product

- Transpose
- Symmetric Matrices
- Inner and Outer Product

Reading: McMahon, Ch. 2

Sum and Difference

In Matlab, matrices are input as lists of numbers; columns are separated by spaces or commas, rows by semicolons or newlines:

```
> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> B = [-4, 3, 5, 1
    2, 2, 0, -1
    3, 2, -4, 5];
> C = [1 1; 2 2];
```

The sum and difference of two matrices can be computed using the operators + and -:

```
> disp(A + B);
    -2 4 5 4
    1 2 2 3
    7 0 3 5
```


Sum and Difference

For sum and difference, matrices have to have the same dimensions:

```
> disp(A - B);
\begin{tabular}{rrrr}
6 & -2 & -5 & 2 \\
-3 & -2 & 2 & 5 \\
1 & -4 & 11 & -5
\end{tabular}
> disp(A + C);
error: operator +: nonconformant arguments
(op1 is 3x4, op2 is 2x2)
```


Size; Product with Scalar

Matlab uses the functions columns(A), rows(A), and size(A) for determining the size of a matrix:

```
> disp(columns(A));
    4
> disp(rows(A));
    3
> disp(size(A));
    3
    4
```

A matrix can be multiplied with a scalar using the operator $*$:

> disp(A * 2) ;			
4	2	0	6
-2	0	4	8
8	-4	14	0

Zero and Identity Matrix

The command zeros(n) generates a zero matrix of size n. Use zeros (n, m) if the matrix isn't square:

```
> disp(zeros(2));
    0 0
    0
> disp(zeros(2, 4));
    0 0 0 0
    0}00
```

The command ones(n) and ones (n, m) construct a matrix of ones in the same way. To generate the identity matrix, use eye (n):

```
> disp(eye(3));
    1 0 0
    0 1 0
    0}00
```


Diagonal Matrices

To extract the main diagonal of a matrix A use $\operatorname{diag}(A)$:

```
> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(diag(A));
    3
    4
    9
```

To create a matrix based on a diagonal use:
> $A=\operatorname{diag}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$;
> disp(A);

1	0	0
0	2	0
0	0	3

Triangular Matrices

Use triu(A) to get the upper triangular part of A, and $\operatorname{tril}(\mathrm{A})$ to get the lower triangular part.

```
> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(triu(A));
        3 1 -7
        0 4 11
        0 0 9
> disp(tril(A));
    3 0
    2 4 0
    3 3 9
```

You can also use triu(A, k) to get the elements above the main diagonal $(k>0)$ or below the main diagonal $(k<0)$.

Block Matrices

A block matrix is a matrix that can be partitioned into smaller matrices called blocks. We can generate this in Matlab by concatenating the blocks:

```
> A = [1, 1; 1 1];
> B = [2, 2; 2 2];
> disp([A B A]);
    1
    1 1 2 2 2 1 1
> disp([A B; A]);
error: number of columns must match (2 != 4)
> disp([A B; B A]);
    1 1 2 2
    1 1 2 2
    2 2 1 1
    2 2 1 1
```


Block Matrices

Alternatively, we can generate a block matrix by repeating the same block multiple times using repmat (A) or repmat (A, k):

```
> A = [1, 2; 3 4];
> disp(repmat(A, 2));
    1 2 1 2
    3 4 3 4
    1 2 1 2
    3 4 3 4
> disp(repmat(A, 2, 3));
\begin{tabular}{llllll}
1 & 2 & 1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4 & 3 & 4 \\
1 & 2 & 1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4 & 3 & 4
\end{tabular}
```


Row and Column Vectors

To extract the element $(A)_{i j}$ of matrix A, use $A(i, j)$ in Matlab:

```
> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> disp(A(1, 4));
    3
> disp(A(2, 3));
2
```

To extract the row vector $\mathbf{r}_{i}(A)$, use $\mathrm{A}(\mathrm{i},:)$, for the column vector $\mathbf{c}_{j}(A)$, use A(: \mathbf{j}):

```
> disp(A(1, :));
    2 1 0 3
> disp(A(:, 4));
```

 3
 4
 0

Row and Column Vectors

Vectors can be concatenated to form a matrix:

```
> v1 = [8; 2; 1; 4]; v2 = [3; 9; 11; 6];
> v3 = [0; 2; 2; 4];
> A = [v1, v2, v3]; disp(A);
    8 0
    2 9 2
    1 11 2
    4 6 4
```

We can also change entries using $A(i, j)=n$ or delete rows or columns using $A(i,:)=[]$ and $A(:, j)=[]:$

```
> A(1, :) = []; disp(A);
    2 9 2
    11 2
    4 6 4
```


Mid-lecture Problem

Suppose you have the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
How do you use Matlab to turn it into $B=\left[\begin{array}{lll}7 & 8 & 9 \\ 7 & 8 & 9 \\ 4 & 5 & 6\end{array}\right]$?

Matrix Product

The operator * can also be used to multiply two matrices. Again, the dimensions have to agree:

```
\(>A=\left[\begin{array}{lll}2 & 1 & 0 ;\end{array}\right.\)
    -1 0 2;
        4-2 0];
\(>B=[12 ;\)
    2 1;
    0 6];
\(>\operatorname{disp}(A * B)\);
        45
    -1 10
    06
> disp(B * A);
error: operator *: nonconformant arguments
(op1 is \(3 x 2\), op2 is \(3 \times 3\) )
```


Matrix Product

There is also the operator .*, which multiplies matrices element by element:
$>C=\left[\begin{array}{lllllll}0 & 1 ; & 1 / 2 & 1 ; & 1 & 5\end{array}\right]$;
$>\operatorname{disp}(\mathrm{A} . * \mathrm{C})$;
000
-2 002
4 -2 0
This has no equivalent in mathematics, but is useful for programming (other elementwise operators exist, e.g., ./ and . for elementwise division and exponentiation).

Product with Vector

The matrix multiplication operator $*$ can be used to multiply a matrix with a vector:

```
> u = [1; 2; 1];
> v = [0; 1; -2];
> disp(A * v);
    1
    -4
    -2
```

And the array multiplication operator .* can also be applied to vectors:
> disp(u .* v);
0
2
-2

Product with Vector

To compute $A \mathbf{v}$, we can also extract the column vectors of A and multiply them with the components of \mathbf{v} :

```
> disp(v(1) * A(:, 1) + v(2) * A(:, 2) + v(3) * A(:, 3));
    1
    -4
    -2
```

We can check the linearity properties of the product with a vector:

```
> disp(A * (1/2 * v)); disp(1/2 * (A * v));
    0.5 0.5
    -2 -2
    -2 -2
> disp(A * (u + v)); disp(A * u + A * v);
    5
    -3
    -2
    -3
    -2 -2
```


Mid-lecture Problem

Suppose you have the matrix $A=\left[\begin{array}{ccc}3.5 & 7.4 & 3.2 \\ 1.5 & 3.9 & 4.0 \\ 9.2 & 4.8 & 4.2 \\ 1.0 & 3.1 & 0.3\end{array}\right]$.
Assume that each of the rows in the matrix represent a series of measurement for a given experiment. Use Matlab to compute the mean for each experiment, and assign the result to a vector.

Transpose

The transpose of a matrix can be computed using '. To compute the trace, use the function trace:

```
>A = [3 1 -7; 2 4 11; 3 3 9];
> disp(A');
        3 2 3
        14 3
    -7 11 9
> disp(trace(A'));
    16
```

With ' we turn column vectors into row vectors and vice versa:

```
> disp(u');
    1 2 1
> disp(v');
    0 1 -2
```


Symmetric Matrices

We get a symmetric matrix by multiplying it with its transpose:

```
> disp(A * A');
    59 -67 -51
    -67 141 117
    -51 117 99
```

> disp(A' * A);
222028
$20 \quad 26 \quad 64$
$28 \quad 64 \quad 251$

To check whether a matrix is symmetric use issymmetric(A):

```
> disp(issymmetric(A));
    0
```

> disp(issymmetric(A * A'));
3

Inner and Outer Product

The inner product $\mathbf{u}^{T} \mathbf{v}$ and the outer product $\mathbf{u v}{ }^{T}$ can be computed using matrix multiplication and the transpose operator:
> disp(u' * v);
0
$>\operatorname{disp}\left(u * v^{\prime}\right)$;
0 1 -2
$0 \quad 2 \quad-4$
$0 \quad 1 \quad-2$
For the inner product, the function dot can be used, which computes the dot product:
> disp(dot(u, v));
0

Summary

- Matrix sum and difference: A + B, A - B;
- zero and identity matrix: zero(n) and eye(n);
- product of two matrices: A * B;
- product of the elements of a matrix: A .* B;
- product of a matrix and a scalar, of a matrix and a vector: A * c, A * v;
- extracting matrix elements and row and column vectors: A(i, j), A(i, :), A(:, j);
- transpose and trace: A', trace(A);
- inner product and outer product: $u^{\prime} * v, u * v^{\prime}$.

