Computational Foundations of Cognitive Science Lecture 11: Matrices in Matlab

Basic Matrix Operations

 Sum and Difference
 Size; Product with Scalar

 Special Matrices

· Zero and Identity Matrix

Basic Matrix Operations Special Matrices Matrix Products Transpose, Inner and Outer Product	Sum and Difference Size: Product with Scalar
Sum and Difference	

In Matlab, matrices are input as lists of numbers; columns are separated by spaces or commas, rows by semicolons or newlines:

```
> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];

> B = [-4, 3, 5, 1

2, 2, 0, -1

3, 2, -4, 5];

> C = [1 1; 2 2];
```

The sum and difference of two matrices can be computed using the operators + and -:

_	_			1 H 2 1 H 2 1 1 2 1 1 2 1	ŝ
7	0	3	5		
1	2	2	3		
-2	4	5	4		
> dis	p(A ·	+ B);			

Basic Matrix Operations Special Matrices Matrix, Products Transpose, Inner and Outer Product	Sum and Difference Size; Product with Scalar
Sum and Difference	

For sum and difference, matrices have to have the same dimensions:

>	disp(A - E	3);		
	6	-2	-5	2	
	-3	-2	2	5	
	1	-4	11	-5	
>	disp(A + 0	C);		
e	ror:	opera	ator +	: nor	conformant arguments
(op1 is	3x4,	, op2	is 2x	(2)

D + (0) + (0) + (0) - 0 + 000

Basic Matrix Operations Special Matrices Sum and Difference Matrix Products Size; Product with Scalar

Size; Product with Scalar

Matlab uses the functions columns(A), rows(A), and size(A) for determining the size of a matrix:

>	disp(columns(A));
	4
>	disp(rows(A));
	3
>	disp(size(A));
	3 4

A matrix can be multiplied with a scalar using the operator *:

				Frank Keller	Computational Foundations of Cognitive Science	
					(日)(四)(2)(2)(2)(2)(2)	200
	8	-4	14	0		J
	-2	0	4	8		
	4	2	0	6		
>	> disp(A * 2	2);			1

Basic Matrix Operations Special Matrices Matrix Products Transpose, Inner and Outer Product	Zero and Identity Matrix Diagonal and Triangular Matrices Block Matrices
Diagonal Matrices	

To extract the main diagonal of a matrix A use diag(A):

> A = [3 1 -7; 2 4	11; 3 3 9];
<pre>> disp(diag(A));</pre>	
3	
4	
9	

To create a matrix based on a diagonal use:

>	A =	dia	g([1	2	3]);		
>	disp	(A)	;				
	1	0	0				
	0	2	0				
	0	0	3				

Zero and Identity Matrix

The command zeros (n) generates a zero matrix of size n. Use zeros (n, m) if the matrix isn't square:

> disp(zeros(2)); 0 0 0 0 > disp(zeros(2, 4)); 0 0 0 0 0 0

The command ones (n) and ones (n, m) construct a matrix of ones in the same way. To generate the identity matrix, use eye(n):

Use triu(A) to get the upper triangular part of A, and tril(A) to get the lower triangular part.

>	A =	[3 1	-7;	24	11;	3	З	9];
>	disp	(tri	u(A));				
	3	1	-	7				
	0	4	1	1				
	0	C)	9				
>	disp	(tri	1(A));				
	3	0	0					
	2	4	0					
	3	3	9					

You can also use triu(A, k) to get the elements above the main diagonal (k > 0) or below the main diagonal (k < 0).

100 100 100 100 100

Special Matrices

Block Matrices

A block matrix is a matrix that can be partitioned into smaller matrices called blocks. We can generate this in Matlab by concatenating the blocks:

						Frank				ons of Cogniti	
-											
	2	2	1	1							
	2										
				2							
				2							
>	disp	([A	Β;	B A]);						
eı	ror:	nur	nber	r of	colu	umns	must	match	(2 != 4)		
>	disp	([A	Β;	A]);							
	1	1	2	2	1	1					
				2							
>	disp	([A	ΒA	A]);							
>	B =	[2,	2;	2 2]	;						
>	A =	[1,	1;	1 1]	;						

Block Matrices

Alternatively, we can generate a block matrix by repeating the same block multiple times using repmat(A) or repmat(A, k):

> A	= [1,	2; 3	34]	;		
> d	isp(rep	mat	(A, 1	2));		
	1	2	1	2			
	3	4	3	4			
	1	2	1	2			
	3	4	3	4			
> d	isp(rep	mat	(A, 1	2, 3));	
	1	2	1	2	1	2	
	3	4	3	4	3	4	
	1	2	1	2	1	2	
	3	4	3	4	3	4	

(D) (#) (2) (2) 2 000 Frank Keller Computational Foundations of Cognitive Science

Row and Column Vectors Matrix Products Transpose, Inner and Outer Product Row and Column Vectors

To extract the element $(A)_{ii}$ of matrix A, use A(i, j) in Matlab:

```
> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> disp(A(1, 4));
  3
> disp(A(2, 3));
  2
```

To extract the row vector $\mathbf{r}_i(A)$, use A(i, :), for the column vector $\mathbf{c}_i(A)$, use A(:, j):

> disp(A(1, :)); 2 1 0 3 > disp(A(:, 4)); 4 0

Basic Matrix Operations	Row and Column Vectors
Special Matrices	Mid-lecture Problem
Matrix Products	Matrix Product
Transpose, Inner and Outer Product	Product with Vector
Row and Column Vectors	

Vectors can be concatenated to form a matrix:

> v1 = [8; 2; 1; 4]; v2 = [3; 9; 11; 6]; > v3 = [0; 2; 2; 4]; > A = [v1, v2, v3]; disp(A);8 3 0 2 9 2 1 2 4 6 4

We can also change entries using A(i, j) = n or delete rows or columns using A(i, :) = [] and A(:, j) = []:

>	A(1, 2 1 4	:) = 9 11 6	[]; 2 2 4	disp(A);
~	A(1	•) =	F1 ·	dien(A):

11

12

Row and Column Vector Mid-lecture Problem Matrix Product Product with Vector

Frank Keller Computational Foundations of Cognitive Science

Mid-lecture Problem

Suppose you have the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.
How do you use Matlab to turn it into $B = \begin{bmatrix} 7 & 8 & 9 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{bmatrix}$?

The operator * can also be used to multiply two matrices. Again, the dimensions have to agree:

-1 0 2;	
4 -2 0];	
> B = [1 2;	
2 1;	
0 6];	
> disp(A * B);	
4 5	
-1 10	
0 6	
> disp(B * A);	
error: operator *: nonconformant arguments	
(op1 is 3x2, op2 is 3x3)	

Frank Keller Computational Foundations of Cognitive Science

Basic Matrix Operations	Row and Column Vectors
Special Matrices	Mid-lecture Problem
Matrix Products	Matrix Product
Transpose, Inner and Outer Product	Product with Vector
Matrix Product	

There is also the operator $\hfill \, \star \, ,$ which multiplies matrices element by element:

This has no equivalent in mathematics, but is useful for programming (other elementwise operators exist, e.g., ./ and .^ for elementwise division and exponentiation).

Basic Matrix Operations	Row and Column Vectors
Special Matrices	Mid-lecture Problem
Matrix Products	Matrix Product
Transpose, Inner and Outer Product	Product with Vector
Product with Vector	

The matrix multiplication operator * can be used to multiply a matrix with a vector:

And the array multiplication operator $\hdots\mbox{-} \star$ can also be applied to vectors:

> disp(u .* v)	;
0	
2	
-2	

 <□>
 →
 ⇒

 >
 >

 >

101 101 121 121 2 000

16

Basic Matrix Operations Row and Column V Special Matrices Mid-lecture Problem Matrix Products Matrix Product ose. Inner and Outer Product Wth Vecto

Product with Vector

To compute $A\mathbf{v}$, we can also extract the column vectors of A and multiply them with the components of \mathbf{v} :

```
> disp(v(1) * A(:, 1) + v(2) * A(:, 2) + v(3) * A(:, 3));
1
-4
-2
```

We can check the linearity properties of the product with a vector:

	_	k Keller Com	outational Foundations of Cognitive Science	17
				- 04
-2		-2		0.0
-3		-3		
-		-		
5		5		
> disp(A >	(u + v));	disp(A * u	+ A * v);	
-2		-2		
-2		-2		
0.5		0.5		
> disp(A >	(1/2 * v));	lisp(1/2 *	(A * v));	

Basic Matrix Operations Special Matrices Matrix, Products Transpose, Inner and Outer Product	Transpose Symmetric Matrices Inner and Outer Product
Transpose	

The transpose of a matrix can be computed using '. To compute the trace, use the function ${\tt trace}:$

```
> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(A');
3 2 3
1 4 3
-7 11 9
> disp(trace(A'));
16
```

With ' we turn column vectors into row vectors and vice versa:

```
> disp(u');
    1    2    1
> disp(v');
    0    1 -2
```

Basic Matrix Operations	Row and Column Vectors
Special Matrices	Mid-lecture Problem
Matrix Products	Matrix Product
Transpose, Inner and Outer Product	Product with Vector
Mid-lecture Problem	

Suppose you have the matrix $A =$	[3.5	7.4	3.2]	
Current and have the metric A	1.5	3.9	4.0	
Suppose you have the matrix $A =$	9.2	4.8	4.2	•
	1.0	3.1	0.3	

Assume that each of the rows in the matrix represent a series of measurement for a given experiment. Use Matlab to compute the mean for each experiment, and assign the result to a vector.

Basic Matrix Operations Special Matrices Matrix: Products Transpose, Inner and Outer Product	Transpose Symmetric Matrices Inner and Outer Product
Symmetric Matrices	

We get a symmetric matrix by multiplying it with its transpose:

> disp(A * A'); 59 -67 -51 141 117 -67 -51 117 99 > disp(A' * A); 22 28 20 20 26 64 28 64 251

To check whether a matrix is symmetric use issymmetric(A):

```
> disp(issymmetric(A));
0
> disp(issymmetric(A * A'));
3
```

19

20

Special Matrices Matrix Products Transpose. Inner and Outer Product

Inner and Outer Product

The inner product $\mathbf{u}^T \mathbf{v}$ and the outer product $\mathbf{u} \mathbf{v}^T$ can be computed using matrix multiplication and the transpose operator:

>	dis	p(u'	* v);	
	0			
>	dis	p(u	* v');	
	0	1	-2	
	0	2	-4	
	0	1	-2	

For the inner product, the function dot can be used, which computes the dot product:

> disp(dot(u, v)); 0

Frank Keller Computational Foundations of Cognitive Science 2

Summary

- Matrix sum and difference: A + B, A B;
- zero and identity matrix: zero(n) and eye(n);
- product of two matrices: A * B;
- product of the elements of a matrix: A .* B;
- product of a matrix and a scalar, of a matrix and a vector: A * c, A * v;
- extracting matrix elements and row and column vectors:
 A(i, j), A(i, :), A(:, j);
- transpose and trace: A', trace(A);
- inner product and outer product: u' * v, u * v'.

Frank Keller Computational Foundations of Cognitive Science 22

101 (B) (2) (2) 2) 2 ORC