Computational Foundations of Cognitive Science

Lecture 10: Algebraic Properties of Matrices; Transpose; Inner and Outer Product

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 23, 2010

Properties of Matrices
Transpose and Trace
Inner and Outer Product

Addition and Scalar Multiplication
Matrix Multiplication
Eero and Identity Matri
Mid-lecture Problem

Addition and Scalar Multiplication

Matrix addition and scalar multiplication obey the laws familiar from the arithmetic with real numbers.

Theorem: Properties of Addition and Scalar Multiplication

If a and b are scalars, and if the sizes of the matrices A, B, and C are such that the operations can be performed, then:

- $A+B=B+A$ (cummutative law for addition)
- $A+(B+C)=(A+B)+C$ (associative law for addition)
- $(a b) A=a(b A)$
- $(a+b) A=a A+b A$
- $(a-b) A=a A-b A$
- $a(A+B)=a A+a B$
- $a(A-B)=a A-a B$
(1) Properties of Matrices
- Addition and Scalar Multiplication
- Matrix Multiplication
- Zero and Identity Matrix
- Mid-lecture Problem
(2) Transpose and Trace
- Definition
- PropertiesInner and Outer Product
Reading: Anton and Busby, Ch. 3.2

Properties of Matrices
Transpose and Trace
nner and Outer Product
dddition and Scalar Multiplication
Matrix Multiplication Zero and Identity Matn
Mid-lecture Problem

Matrix Multiplication

However, matrix multiplication is not cummutative, i.e., in general
$A B \neq B A$. There are three possible reasons for this:

- $A B$ is defined, but $B A$ is not (e.g., A is $2 \times 3, B$ is 3×4);
- $A B$ and $B A$ are both defined, but differ in size (e.g., A is $2 \times 3, B$ is 3×2);
- $A B$ and $B A$ are both defined and of the same size, but they are different.

Example

Assume $A=\left[\begin{array}{cc}-1 & 0 \\ 2 & 3\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$ then
$A B=\left[\begin{array}{cc}-1 & -2 \\ 11 & 4\end{array}\right] \quad B A=\left[\begin{array}{cc}3 & 6 \\ -3 & 0\end{array}\right]$

Matrix Multiplication

While the cummutative law is not valid for matrix multiplication, many properties of multiplication of real numbers carry over.

Theorem: Properties of Matrix Multiplication

If a is a scalar, and if the sizes of the matrices A, B, and C are such that the operations can be performed, then:

- $A(B C)=(A B) C$ (associative law for multiplication)
- $A(B+C)=A B+A C$ (left distributive law)
- $(B+C) A=B A+C A$ (right distributive law)
- $A(B-C)=A B-A C$
- $(B-C) A=B A-C A$
- $a(B C)=(a B) C=B(a C)$

Therefore, we can write $A+B+C$ and $A B C$ without parentheses.

Zero Matrix

Theorem: Properties of 0

If c is a scalar, and if the sizes of the matrices are such that the operations can be performed, then:

- $A+0=0+A=A$
- $A-0=A$
- $A-A=A+(-A)=0$
- $O A=0$
- if $c A=0$ then $c=0$ or $A=0$

However, the cancellation law of real numbers does not hold for matrices: if $a b=a c$ and $a \neq 0$, then not in general $b=c$.

Example

Assume $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right] \quad C=\left[\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right]$.
It holds that $A B=A C=\left[\begin{array}{ll}3 & 4 \\ 6 & 8\end{array}\right]$.
So even though $A \neq 0$, we can't conclude that $B=C$.

We saw that if $c A=0$ then $c=0$ or $A=0$. Does this extend to the matrix matrix product? In other words, can we conclude that if $C A=0$ then $C=0$ or $A=0$?

Example

Assume $C=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$.
Can you come up with an $A \neq 0$ so that $C A=0$?
The identity matrix / plays a role in matrix algebra similar to that of 1 in the algebra of real numbers, where $a \cdot 1=1 \cdot a=a$.
A square matrix with ones on the main diagonal and zeros everywhere else is an identity matrix. It is denoted as I or I_{n} to indicate the size

Examples

[1] $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Properties of Matrices
Transpose and Trace
Inner and Outer Product

Addition and Scalar Multiplication
 Matrix Multiplication
 Zero and Identity Ma Mid-lecture Problem

Identity Matrix

Multiplying an matrix with / will leave that matrix unchanged.

Theorem: Identity

If A is an $n \times m$ matrix, then $A I_{m}=A$ and $I_{n} A=A$.

Examples

$A /_{3}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]=A$
$I_{2} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]=A$

Propenties of Matrices Transpose and Trace
 Addition and Scalar M Matrix Multiplication
 Matrix Multiplication Zero and Idenrity Matnix
 Zero and Identity Matn Mid-lecture Problem

Example: Representing Images

Assume we use matrices to represent greyscale images. If we multiply an image with / then it remains unchanged:

Recall that 0 is black, and 255 is white.

Definition: Transpose

If A is an $m \times n$ matrix, then the transpose of A, denoted by A^{T}, is defined to be the $n \times m$ matrix that is obtained by making the rows of A into columns: $(A)_{i j}=\left(A^{T}\right)_{j i}$.

> Examples
> $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad B=\left[\begin{array}{ll}2 & 3 \\ 1 & 4 \\ 5 & 6\end{array}\right] \quad C=\left[\begin{array}{lll}1 & 3 & -5\end{array}\right] \quad D=[4]$
> $A^{T}=\left[\begin{array}{lll}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34}\end{array}\right] B^{T}=\left[\begin{array}{lll}2 & 1 & 5 \\ 3 & 4 & 6\end{array}\right] C^{T}=\left[\begin{array}{c}1 \\ 3 \\ -5\end{array}\right] D^{T}=[4]$

Frank Keller Computational Foundations of Cognitive Science

Theorem: Properties of the Transpose

If the sizes of the matrices are such that the stated operations can be performed, then:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A-B)^{T}=A^{T}-B^{T}$
- $(k A)^{T}=k A^{T}$
- $(A B)^{T}=B^{T} A^{T}$

If A is a square matrix, we can obtain A^{T} by interchanging the entries that are symmetrically positions about the main diagonal:

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 4 \\
3 & 7 & 0 \\
5 & 8 & -6
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
-1 & 3 & 5 \\
2 & 7 & 8 \\
4 & 0 & -6
\end{array}\right]
$$

Definition: Trace

If A is a square matrix, then the trace of A, denoted by $\operatorname{tr}(A)$, is defined to be the sum of the entries on the main diagonal of A.

$$
\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)=-1+7+(-6)=0
$$

Properties of the Trace

Theorem: Transpose and Dot Product

$A \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot A^{T} \mathbf{v}$
$\mathbf{u} \cdot A \mathbf{v}=A^{T} \mathbf{u} \cdot \mathbf{v}$

Theorem: Properties of the Trace

If A and B are square matrices of the same size, then:

- $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$
- $\operatorname{tr}(c A)=c \operatorname{tr}(A)$
- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(A-B)=\operatorname{tr}(A)-\operatorname{tr}(B)$
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Example: Representing Images

We can transpose a matrix representing an image:

Definition: Inner and Outer Product

If \mathbf{u} and \mathbf{v} are column vectors with the same size, then $\mathbf{u}^{T} \mathbf{v}$ is the inner product of \mathbf{u} and \mathbf{v}; if \mathbf{u} and \mathbf{v} are column vectors of any size, then $\mathbf{u} \mathbf{v}^{T}$ is the outer product of \mathbf{u} and \mathbf{v}.

Theorem: Properties of Inner and Outer Product

$\mathbf{u}^{T} \mathbf{v}=\operatorname{tr}\left(\mathbf{u} \mathbf{v}^{T}\right)$
$\mathbf{u}^{\top} \mathbf{v}=\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}=\mathbf{v}^{\top} \mathbf{u}$
$\operatorname{tr}\left(\mathbf{u v}^{\top}\right)=\operatorname{tr}\left(\mathbf{v} \mathbf{u}^{T}\right)=\mathbf{u} \cdot \mathbf{v}$
Properties of Matrices

$$
\begin{aligned}
& \text { Transpose and Trace } \\
& \text { Inner and Outer Product }
\end{aligned}
$$

Inner and Outer Product

$$
\begin{aligned}
& \text { Examples } \\
& \mathbf{u}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
5
\end{array}\right] \quad \mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{ll}
-1 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right]=-1 \cdot 2+3 \cdot 5=[13]=13 \\
& \mathbf{u v}^{T}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]\left[\begin{array}{ll}
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
-1 \cdot 2 & -1 \cdot 5 \\
3 \cdot 2 & 3 \cdot 5
\end{array}\right]=\left[\begin{array}{cc}
-2 & -5 \\
6 & 15
\end{array}\right] \\
& \mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
\end{array}\right]=\mathbf{u} \cdot \mathbf{v} \\
& \mathbf{u v}^{T}=\left[\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \cdots & u_{1} v_{n} \\
u_{2} v_{1} & u_{2} v_{2} & \cdots & u_{2} v_{n} \\
\vdots & \vdots & & \vdots \\
u_{2} \\
\vdots \\
u_{n} v_{1} & u_{n} v_{2} & \cdots & u_{n} v_{n}
\end{array}\right]
\end{aligned}
$$

- Matrix addition and scalar multiplication are cummutative, associative, and distributive;
- matrix multiplication is associative and distributive, but not cummutative: $A B \neq B A$;
- the zero matrix 0 consists of only zeros, the identity matrix I consists of ones on the diagonal and zeros everywhere else;
- transpose $A^{T}:(A)_{i j}=\left(A^{T}\right)_{j i}$;
- trace $\operatorname{tr}(A)$: sum of the entries on the main diagonal;
- the trace and the transpose are distributive;
- inner product: $\mathbf{u}^{T} \mathbf{v}$;
- outer product: $\mathbf{u v}^{T}$.

