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Matrix Notation

A matrix is a rectangular array of entries. An m × n matrix has m
rows and n columns.

Examples 1 2
3 0
−1 4

 [
1 2 −1
3 0 4

] [
2 1 0 3

] [
1
3

]

Capital letters such as A to denote matrices, lowercase letters such
as a12 denote entries:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 abbreviated as [aij ]m×n or just [aij ]
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Matrix Notation

An n × n matrix is called a square matrix. The entries
a11, a22, . . . , ann are the main diagonal of the matrix. (A)ij denotes
the entries in row i and column j of matrix A.

Example

If A =

[
3 −3
7 0

]
then (A)11 = 3, (A)12 = −3, (A)21 = 7, and (A)22 = 0.

Two matrices are equal if they have the same size and their
corresponding entries are equal.

Definition: Equality

If A = [aij ] and B = [bij ] have the same size, then A = B iff
(A)ij = (B)ij (or equivalently aij = bij), for all i and j .
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Sum and Difference

For matrices of the same size, A + B and A− B can be obtained
by adding/subtracting the corresponding entries of A and B.

Definition: Sum and Difference

If A = [aij ] and B = [bij ] have the same size, then
(A + B)ij = (A)ij + (B)ij = aij + bij and
(A− B)ij = (A)ij − (B)ij = aij − bij .

Example 2 1 0 3
−1 0 2 4
4 −2 7 0

 +

−4 3 5 1
2 2 0 −1
3 2 −4 5

 =

−2 4 5 4
1 2 3 3
7 0 3 5


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Product with Scalar

The product of a matrix A and a scalar c is obtained by
multiplying each entry of A with c .

Definition: Product with a Scalar

If A = [aij ] and c is a scalar, then (cA)ij = c(A)ij = caij .

Examples

2

[
2 3 4
1 3 1

]
=

[
4 6 8
2 6 2

]
1
3

[
9 −6 3
3 0 12

]
=

[
3 −2 1
1 0 4

]
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Example: Representing Images

A greyscale image can be represented as a matrix of integers, each
of which represents a shade of grey from 0 (black) to 255 (white).

A =


106 147 145 · · · 153
94 114 112 · · · 98
90 107 106 · · · 106
...

...
...

...
117 112 148 · · · 129

 =
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Example: Representing Images

We can change the brightness of an image by multiplying its
matrix with a scalar:

2A = 1
2A =

How do we get the inverse of an image?
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Example: Representing Images

A matrix which has 1 on its diagonal and 0 everywhere else is
called an identity matrix.

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 255I =
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Example: Representing Images

We can add and subtract the matrices of two images:

A + 255I = 255I − A =

What happened for 255I − A?
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Row and Column Vectors

A matrix can be portioned into row vectors or column vectors. We
use ri (A) to denote the i-th row vector and cj(A) to denote the
j-th column vector of matrix A.

Examples

If A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

, then c3(A) =

a13

a23

a33

 and

r1(A) =
[
a11 a12 a13 a14

]
and r2(A) =

[
a21 a22 a23 a24

]
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Product with Vector

The product of a matrix A and a vector x is the linear combination of the
column vectors of A and the entries of x.

Definition: Product with a Vector

If A is an m × n matrix with the column vectors a1, a2, . . . , an, and x is
an n × 1 column vector then

Ax =
[
a1 a2 · · · an

]


x1

x2

...
xn

 = x1a1 + x2a2 + · · ·+ xnan

Example[
1 −3 2
4 0 −5

]3
1
2

 = 3

[
1
4

]
+ 1

[
−3
0

]
+ 2

[
2
−5

]
=

[
4
2

]
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Mid-lecture Problem

Assume you have a system of four linear equations, each of which
has three variables.

How can you represent this system using a matrix A and a
vector x? What are the dimensions of A and x? What does the
product Ax correspond to?

Example:

4a + 2b − c = 3
−2a + b − 3c = 0

a− 5b = 4
−b + 6c = −3
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Product with Vector

Alternative notation for Ax without using column vectors:
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




x1

x2

...
xn

 =


x1a11 + x2a12 + · · ·+ xna1n

x1a21 + x2a22 + · · ·+ xna2n

...
x1am1 + x2am2 + · · ·+ xnamn


Theorem: Linearity Properties

If A is an m × n matrix, then the following holds for all column
vectors u and v in Rn and every scalar c :

1 A(cu) = c(Au)

2 A(u + v) = Au + Av
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Matrix Product

Definition: Matrix Product

If A is an m× s matrix and B is an s × n matrix and if the column
vectors of B are b1,b2, . . . ,bn, then the product AB is the m × n
matrix AB =

[
Ab1 Ab2 · · · Abn

]
.

Note that the number of columns of A has to be the same as the
number or row of B, otherwise the product is undefined.

Example

AB =

[
1 2 4
2 6 0

]4 1 4 3
0 −1 3 1
2 7 5 2

 =

[
12 27 30 13
8 −4 26 12

]
Note that BA is undefined, as B is 3× 4 and A is 2× 3.
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Example: Representing Images

Let’s assume a variant of the identity matrix with two diagonals
containing ones, as in:

B =

2666666666666664

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

3777777777777775
255B =
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Example: Representing Images

Examples for matrix multiplication:

AB = BA =

Frank Keller Computational Foundations of Cognitive Science 17



Notation and Basic Operations
Matrix Products

Row and Column Vectors
Product with Vector
Mid-lecture Problem
Matrix Product

Example: Representing Images

Examples for matrix multiplication:

BAB = ABB =
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Row-Column Rule

Sometimes we want to compute a specific entry in a matrix
product, without computing the entire column.

The entry in row i and column j of AB is the i-th row vector of A
times the j-th column vector of B:

Theorem: Row-Column Rule or Dot Product Rule

(AB)ij = ri (A)cj(B) = ri (A) · cj(B) = ai1b1j + ai2b2j + · · ·+ aisbsj

In the same way, the j-th column of AB is A times the j-th column
of B. The i-th row of AB is the i-th row of A times B.

Theorem: Column Rule and Row Rule

cj(AB) = Acj(B) ri (AB) = ri (A)B
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Summary

Matrix addition: (A + B)ij = (A)ij + (B)ij = aij + bij ;

matrix subtraction: (A− B)ij = (A)ij − (B)ij = aij − bij ;

product with scalar: (cA)ij = c(A)ij = caij ;

i-th row vector of A: ri (A); j-th column vector: cj(A);

product with vector: Ax = x1a1 + x2a2 + · · ·+ xnan;

matrix product: AB =
[
Ab1 Ab2 · · · Abn

]
;

row-column rule: (AB)ij = ri (A)cj(B).
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