Computational Foundations of Cognitive Science Lecture 9: Basic Operations on Matrices; Matrix Product

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 23, 2010

Notation and Basic Operations

- Matrix Notation
- Sum and Difference
- Product with Scalar

Matrix Products

- Row and Column Vectors
- Product with Vector
- Mid-lecture Problem
- Matrix Product

Reading: Anton and Busby, Ch. 3.1

Matrix Notation

A matrix is a rectangular array of entries. An $m \times n$ matrix has m rows and n columns.

Examples

 $\begin{bmatrix} 2\\0\\4 \end{bmatrix} \begin{bmatrix} 1&2&-1\\3&0&4 \end{bmatrix} \begin{bmatrix} 2&1&0&3 \end{bmatrix} \begin{bmatrix} 1\\3 \end{bmatrix}$ 3

Capital letters such as A to denote matrices, lowercase letters such as a12 denote entries:

a₁₁ a₁₂ ··· a_{1n} $\begin{array}{cccc} a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \end{array} \quad \text{abbreviated as } [a_{ij}]_{m \times n} \text{ or just } [a_{ij}]$ A =am2 ... amn

Frank Keller Computational Foundations of Cognitive Science

Matrix Notation Notation and Basic Operations

Matrix Notation

An $n \times n$ matrix is called a square matrix. The entries $a_{11}, a_{22}, \ldots, a_{nn}$ are the *main diagonal* of the matrix. (A)_{ii} denotes the entries in row i and column j of matrix A.

Example If $A = \begin{bmatrix} 3 & -3 \\ 7 & 0 \end{bmatrix}$ then $(A)_{11} = 3$, $(A)_{12} = -3$, $(A)_{21} = 7$, and $(A)_{22} = 0$.

Two matrices are equal if they have the same size and their corresponding entries are equal.

Definition: Equality

If $A = [a_{ij}]$ and $B = [b_{ij}]$ have the same size, then A = B iff $(A)_{ij} = (B)_{ij}$ (or equivalently $a_{ij} = b_{ij}$), for all *i* and *j*.

Notation and Basic Operations Matrix Products

Sum and Difference Product with Scalar

Sum and Difference

For matrices of the same size, A + B and A - B can be obtained by adding/subtracting the corresponding entries of A and B.

Definition: Sum and Difference

If $A = [a_{ij}]$ and $B = [b_{ij}]$ have the same size, then $(A + B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$ and $(A - B)_{ij} = (A)_{ij} - (B)_{ij} = a_{ij} - b_{ij}$.

Example										
$\begin{bmatrix} 2 & 1 \\ -1 & 0 \\ 4 & -2 \end{bmatrix}$	0 2 7	$\begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} +$	$\begin{bmatrix} -4\\ 2\\ 3 \end{bmatrix}$	3 2 2	5 0 -4	=	-2 1 7	4 2 0	5 3 3	4 3 5

Frank Keller Computational Foundations of Cognitive Science

0.00 \$ (\$) (\$) (\$) (\$)

Notation and Basic Operations Matrix Products	Matrix Notation Sum and Difference Product with Scalar
Example: Representing Image	es

A greyscale image can be represented as a matrix of integers, each of which represents a shade of grey from 0 (black) to 255 (white).

$$A = \begin{bmatrix} 106 & 147 & 145 & \cdots & 153 \\ 94 & 114 & 112 & \cdots & 98 \\ 90 & 107 & 106 & \cdots & 106 \\ \vdots & \vdots & \vdots & & \vdots \\ 117 & 112 & 148 & \cdots & 129 \end{bmatrix} =$$

Matrix Notation Sum and Difference Product with Scalar

Product with Scalar

The product of a matrix A and a scalar c is obtained by multiplying each entry of A with c.

Definition: Product with a Scalar

If $A = [a_{ij}]$ and c is a scalar, then $(cA)_{ij} = c(A)_{ij} = ca_{ij}$.

Examples							
$2\begin{bmatrix} 2 & 3 & 4\\ 1 & 3 & 1 \end{bmatrix}$	$=\begin{bmatrix}4\\2\end{bmatrix}$	5 8 5 2	$\frac{1}{3}\begin{bmatrix}9\\3\end{bmatrix}$	-6 0	$\begin{bmatrix} 3\\12\end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$	-2 0	1 4]

100 E (E) (E) (E) (D)

Frank Keller Computational Foundations of Cognitive Science

We can change the brightness of an image by multiplying its matrix with a scalar:

How do we get the inverse of an image?

Example: Representing Images

A matrix which has 1 on its diagonal and 0 everywhere else is called an *identity matrix*.

Example: Representing Images

Notation and Basic Operations

We can add and subtract the matrices of two images:

Sum and Difference Product with Scalar

What happened for 255I - A?

Notation and Basic Operations Matrix Products	Row and Column Vectors Product with Vector Mid-lecture Problem Matrix Product
Row and Column Vectors	

Frank Keller

A matrix can be portioned into *row vectors* or *column vectors*. We use $\mathbf{r}_i(A)$ to denote the *i*-th row vector and $\mathbf{c}_i(A)$ to denote the *j*-th column vector of matrix A.

The product of a matrix A and a vector \mathbf{x} is the linear combination of the column vectors of A and the entries of \mathbf{x} .

Definition: Product with a Vector

If A is an $m \times n$ matrix with the column vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and \mathbf{x} is an $n \times 1$ column vector then

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \mathbf{a}_2 +$$

$$\begin{bmatrix} -3 & 2\\ 1 & 0 & -5 \end{bmatrix} \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix} = 3 \begin{bmatrix} 1\\ 4 \end{bmatrix} + 1 \begin{bmatrix} -3\\ 0 \end{bmatrix} + 2 \begin{bmatrix} 2\\ -5 \end{bmatrix} = \begin{bmatrix} 4\\ 2 \end{bmatrix}$$

000 \$ (\$) (\$) (\$) \$ OQO

Computational Foundations of Cognitive Science

12

 $\cdots + x_n a_n$

Notation and Basic Operations Matrix Products

Product with Vector Mid-lecture Problem Matrix Product

Mid-lecture Problem

Assume you have a system of four linear equations, each of which has three variables.

How can you represent this system using a matrix A and a vector x? What are the dimensions of A and x? What does the product Ax correspond to?

Example:

4a+2b-c = 3-2a+b-3c = 0a-5b = 4-b+6c = -3

Product with Vector

Alternative notation for Ax without using column vectors:

[a11	a ₁₂	 a1n]	$\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{bmatrix} x_1a_{11} + x_2a_{12} + \cdots + x_na_{1n} \end{bmatrix}$
a21	a ₂₂	 a _{2n}	x2	$x_1a_{21} + x_2a_{22} + \cdots + x_na_{2n}$
1 :	1	:	: =	:
a _{m1}	a _{m2}	 amn	[x _n]	$\left\lfloor x_1 a_{m1} + x_2 a_{m2} + \dots + x_n a_{mn} \right\rfloor$

Theorem: Linearity Properties

If A is an $m \times n$ matrix, then the following holds for all column vectors **u** and **v** in \mathbb{R}^n and every scalar c:

- (cu) = c(Au)
- $\mathbf{0} \ A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$

Frank Keller Computational Foundations of Cognitive Science 14

Frank Keller Computational Foundations of Cognitive Science

000 \$ (\$) (\$) (\$) (\$)

Notation and Basic Operations Matrix Products	Row and Column Vectors Product with Vector Mid-Jacture Problem Matrix Product
Matrix Product	

Definition: Matrix Product

If A is an $m \times s$ matrix and B is an $s \times n$ matrix and if the column vectors of B are $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}$, then the product AB is the $m \times n$ matrix $AB = \begin{bmatrix} A\mathbf{b_1} & A\mathbf{b_2} & \cdots & A\mathbf{b_n} \end{bmatrix}$.

Note that the number of columns of A has to be the same as the number or row of B, otherwise the product is undefined.

Example		
	$\begin{bmatrix} 4 & 3 \\ 3 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$, as <i>B</i> is 3 × 4 and <i>A</i> is 2 × 3.	

Let's assume a variant of the identity matrix with two diagonals
containing ones, as in:

Notation and Basic Operations Matrix Products Example: Representing Images

	Го	0	0	0	0	1	0	0	0	0]	
	0	0	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	0	0	1	0	
<i>B</i> =	0	0	0	0	0	0	0	0	0	1	055 D
D =	1	0	0	0	0	0	0	0	0	0	255B =
	0	1	0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	0	
	Lo	0	0	0	1	0	0	0	0	0	
	Lο	0	0	0	1	0	0	0	0	0	

Notation and Basic Operations Matrix Products Product with Vector Mid-lecture Problem Matrix Product

Example: Representing Images

Examples for matrix multiplication:

Notation and Basic Operations Matrix Products	Row and Column Vectors Product with Vector Mid-lecture Problem Matrix Product
Row-Column Rule	

Sometimes we want to compute a specific entry in a matrix product, without computing the entire column.

Frank Keller

The entry in row i and column j of AB is the i-th row vector of A times the j-th column vector of B:

Theorem: Row-Column Rule or Dot Product Rule $(AB)_{ij} = \mathbf{r}_i(A)\mathbf{c}_j(B) = \mathbf{r}_i(A) \cdot \mathbf{c}_j(B) = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{i8}b_{sj}$

In the same way, the *j*-th column of AB is A times the *j*-th column of B. The *i*-th row of AB is the *i*-th row of A times B.

Theorem: Column I	Rule and Row Rule	
$\mathbf{c}_j(AB) = A\mathbf{c}_j(B)$	$\mathbf{r}_i(AB) = \mathbf{r}_i(A)B$	

0.00 \$ (\$) (\$) (\$) (\$)

Computational Foundations of Cognitive Science

	Notation and Basic Operations Matrix Products	Row and Column Vectors Product with Vector Mid-lecture Problem Matrix Product
Summary		

- Matrix addition: $(A + B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$;
- matrix subtraction: (A B)_{ij} = (A)_{ij} (B)_{ij} = a_{ij} b_{ij};
- product with scalar: (cA)_{ij} = c(A)_{ij} = ca_{ij};
- *i*-th row vector of A: r_i(A); *j*-th column vector: c_j(A);
- product with vector: $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$;
- matrix product: $AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_n \end{bmatrix}$;
- row-column rule: (AB)_{ij} = r_i(A)c_i(B).