Computational Foundations of Cognitive Science

Lecture 9: Basic Operations on Matrices; Matrix Product

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

February 23, 2010

Notation and Basic Operations

- Matrix Notation
- Sum and Difference
- Product with Scalar
(2) Matrix Products
- Row and Column Vectors
- Product with Vector
- Mid-lecture Problem
- Matrix Product

Reading: Anton and Busby, Ch. 3.1

| Notation and Basic Operations |
| :--- | :--- |
| Matrix Products | | Matrix Notation |
| :---: |
| Sum and Difrence |
| Product with Scalar |

An $n \times n$ matrix is called a square matrix. The entries $a_{11}, a_{22}, \ldots, a_{n n}$ are the main diagonal of the matrix. $(A)_{i j}$ denotes the entries in row i and column j of matrix A.

Example

If $A=\left[\begin{array}{cc}3 & -3 \\ 7 & 0\end{array}\right]$ then $(A)_{11}=3,(A)_{12}=-3,(A)_{21}=7$, and $(A)_{22}=0$.
Two matrices are equal if they have the same size and their corresponding entries are equal.

Definition: Equality

If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ have the same size, then $A=B$ iff $(A)_{i j}=(B)_{i j}$ (or equivalently $a_{i j}=b_{i j}$), for all i and j.

Sum and Difference

For matrices of the same size, $A+B$ and $A-B$ can be obtained by adding/subtracting the corresponding entries of A and B.

Definition: Sum and Difference

If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ have the same size, then
$(A+B)_{i j}=(A)_{i j}+(B)_{i j}=a_{i j}+b_{i j}$ and
$(A-B)_{i j}=(A)_{i j}-(B)_{i j}=a_{i j}-b_{i j}$.

Example

$\left[\begin{array}{cccc}2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0\end{array}\right]+\left[\begin{array}{cccc}-4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5\end{array}\right]=\left[\begin{array}{cccc}-2 & 4 & 5 & 4 \\ 1 & 2 & 3 & 3 \\ 7 & 0 & 3 & 5\end{array}\right]$

Notation and Basic Operations

 Matrix Products
Matrix Notation

Sum and Difference
Product with Scalar

Example: Representing Images

We can change the brightness of an image by multiplying its matrix with a scalar:

How do we get the inverse of an image?

Example: Representing Images

Example: Representing Images

A matrix which has 1 on its diagonal and 0 everywhere else is called an identity matrix.

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \quad 255 I=
$$

ow and Column Vectors

Notation and Basic Operations	$\begin{array}{l}\text { Row and } \\ \text { Product with Vector }\end{array}$

Row and Column Vectors

A matrix can be portioned into row vectors or column vectors. We use $\mathbf{r}_{i}(A)$ to denote the i-th row vector and $\mathbf{c}_{j}(A)$ to denote the j-th column vector of matrix A.

Examples

If $A=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$, then $\mathbf{c}_{3}(A)=\left[\begin{array}{l}a_{13} \\ a_{23} \\ a_{33}\end{array}\right]$ and
$\mathbf{r}_{1}(A)=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14}\end{array}\right]$ and $\mathbf{r}_{2}(A)=\left[\begin{array}{llll}a_{21} & a_{22} & a_{23} & a_{24}\end{array}\right]$

We can add and subtract the matrices of two images:

What happened for 255 I $-A$?

The product of a matrix A and a vector \mathbf{x} is the linear combination of the column vectors of A and the entries of \mathbf{x}.
Definition: Product with a Vector
If A is an $m \times n$ matrix with the column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$, and \mathbf{x} is an $n \times 1$ column vector then
$A \mathbf{x}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}$

Example

$$
\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & 0 & -5
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]=3\left[\begin{array}{l}
1 \\
4
\end{array}\right]+1\left[\begin{array}{c}
-3 \\
0
\end{array}\right]+2\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Assume you have a system of four linear equations, each of which has three variables

How can you represent this system using a matrix A and a vector \mathbf{x} ? What are the dimensions of A and \mathbf{x} ? What does the product $A \mathrm{x}$ correspond to?
Example:

$$
\begin{aligned}
4 a+2 b-c & =3 \\
-2 a+b-3 c & =0 \\
a-5 b & =4 \\
-b+6 c & =-3
\end{aligned}
$$

Alternative notation for $A \mathbf{x}$ without using column vectors:
$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}x_{1} a_{11}+x_{2} a_{12}+\cdots+x_{n} a_{1 n} \\ x_{1} a_{21}+x_{2} a_{22}+\cdots+x_{n} a_{2 n} \\ \vdots \\ x_{1} a_{m 1}+x_{2} a_{m 2}+\cdots+x_{n} a_{m n}\end{array}\right]$

Theorem: Linearity Properties

If A is an $m \times n$ matrix, then the following holds for all column vectors \mathbf{u} and \mathbf{v} in R^{n} and every scalar c :
(1) $A(c \mathbf{u})=c(A \mathbf{u})$
(2) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$

Notation and Basic Operations Product with Vector
 Matrix Products

$$
\begin{aligned}
& \text { Mid-lecture Pro } \\
& \text { Matrix Product }
\end{aligned}
$$

Matrix Product

Definition: Matrix Product

If A is an $m \times s$ matrix and B is an $s \times n$ matrix and if the column vectors of B are $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathbf{n}}$, then the product $A B$ is the $m \times n$ matrix $A B=\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{n}\end{array}\right]$.

Note that the number of columns of A has to be the same as the number or row of B, otherwise the product is undefined.

Example

$A B=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right]\left[\begin{array}{cccc}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right]=\left[\begin{array}{cccc}12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12\end{array}\right]$

Let's assume a variant of the identity matrix with two diagonals containing ones, as in:

Note that $B A$ is undefined, as B is 3×4 and A is 2×3.

Examples for matrix multiplication:

Examples for matrix multiplication:

Row and Column Vectors

Mid-lecture Problem
Matrix Product

Notation and Basic Operations
Matrix Products

Row and Column Vectors Miduct with Vector Matrix Product

Summary

Sometimes we want to compute a specific entry in a matrix product, without computing the entire column.
The entry in row i and column j of $A B$ is the i-th row vector of A times the j-th column vector of B :

Theorem: Row-Column Rule or Dot Product Rule

$(A B)_{i j}=\mathbf{r}_{i}(A) \mathbf{c}_{j}(B)=\mathbf{r}_{i}(A) \cdot \mathbf{c}_{j}(B)=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i s} b_{s j}$
In the same way, the j-th column of $A B$ is A times the j-th column of B. The i-th row of $A B$ is the i-th row of A times B.

$$
\begin{aligned}
& \text { Theorem: Column Rule and Row Rule } \\
& \mathbf{c}_{j}(A B)=A \mathbf{c}_{j}(B) \quad \mathbf{r}_{i}(A B)=\mathbf{r}_{i}(A) B
\end{aligned}
$$

- Matrix addition: $(A+B)_{i j}=(A)_{i j}+(B)_{i j}=a_{i j}+b_{i j}$;
- matrix subtraction: $(A-B)_{i j}=(A)_{i j}-(B)_{i j}=a_{i j}-b_{i j}$;
- product with scalar: $(c A)_{i j}=c(A)_{i j}=c a_{i j} ;$
- i-th row vector of $A: \mathbf{r}_{i}(A) ; j$-th column vector: $\mathbf{c}_{j}(A)$;
- product with vector: $A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}$;
- matrix product: $A B=\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{n}\end{array}\right]$;
- row-column rule: $(A B)_{i j}=\mathbf{r}_{i}(A) \mathbf{c}_{j}(B)$.

