1 Lecture attendance

1. To find this probability matrix, divide by the total number of students registered for the course:
```
jointProb1 = data1/sum(sum(data1)) = [ 0.2250 0.3750
    0.3000 0.1000 ]
jointProb2 = data2/sum(sum(data2)) = [ 0.4500 0.1500
    0.3000 0.1000 ]
```

2. $[p(P) p(A)]=\operatorname{sum}(j o i n t P r o b)=\left[\begin{array}{lll}0.5250 & 0.4750\end{array}\right]$ and $[0.75000 .2500]$ $[p(M) p(F)]=\operatorname{sum}(j o i n t P r o b ')=[0.60000 .4000]$ for both lectures
3. We need to check whether $p(M \cap P)=p(M) p(P)$, etc. The matrix of products is given by

$$
\begin{aligned}
{[p(M) p(F)]^{\prime} *[p(P) p(A)]=\left[\begin{array}{lll}
0.3150 & 0.2850 \\
0.2100 & 0.1900
\end{array}\right] }
\end{aligned} \text { and [} \begin{aligned}
& 0.4500 \\
& 0.3000
\end{aligned} 0.1500
$$

Comparing with the answer to Question 1, it can be seen that sex is a factor affecting lecture attendance for the 9am lecture, but not for the 10am lecture.
4. Use the formula $p(P \mid M)=p(P \cap M) / p(M)$, etc. The answers are:
$[0.3750$
0.7500
0.6250
and
[0.7500
0.2500
0.2500]
$0.7500 \quad 0.2500]$

From this you would conclude that female students are equally likely to attend a 9am lecture and a 10am lecture. Male students are much less likely to attend 9 am lectures than females, and are less likely to attend a 9am lecture than a 10am lecture. A student is equally likely to attend a 10am lecture, regardless of sex.

2 Tossing biased coins

1. Use Bayes' theorem:

$$
\begin{aligned}
p(B \mid H) & =\frac{p(B \cap H)}{p(H)}=\frac{p(H \mid B) p(B)}{p(H \mid B) p(B)+p(H \mid F) p(F)} \\
& =\frac{0.6 \times 0.5}{0.6 \times 0.5+0.5 \times 0.5}=0.545
\end{aligned}
$$

2. We can use the answer to the previous question - this is the new probability of the coin being biased, given that the previous throw was heads:

$$
\begin{aligned}
p\left(H_{2} \mid H_{1}\right) & =p\left(H_{2} \cap B \mid H_{1}\right)+p\left(H_{2} \cap F \mid H_{1}\right) \\
& =p\left(H_{2} \mid B\right) p\left(B \mid H_{1}\right)+p\left(H_{2} \mid F\right) p\left(B \mid H_{1}\right) \\
& =0.6 \times 0.545+0.5 \times(1-0.545)=0.555
\end{aligned}
$$

Note: this uses the fact that $p\left(H_{2} \mid B, H_{1}\right)=p\left(H_{2} \mid B\right)$, in other words, successive throws are independent of each other, if we know which coin has been chosen.
3. function [prob] = CoinFlipProb(n, coinType)

```
if coinType == 1 % biased
    p = 0.6
else
    p=0.5
    end
    prob = factorial(2*n)./factorial(n).^2 .* p.^n .* (1-p).^n;
end
```

(The dots are just there to allow the function to be called with several different values of n simultaneously.)
4. Use a similar calculation to Question 1.
n $=0: 40$;
probs = CoinFlipProb(n, 1)./(CoinFlipProb(n, 1)+CoinFlipProb(n, 2)); plot(probs);

