case studies in design informatics

Lecture 12: Biophysical Measurement

Institute for Language, Cognition & Computation,
School of Informatics

Neuropolitics Research Lab, Politics and I.R.

www.robin.org.uk r.l.hill@ed.ac.uk

Some background

- Zeng, Z. H., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey of affect recognition methods: audio, visual, and spontaneous expressions. [Review]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 39-58. doi: 10.1109/tpami.2008.52.
- Vinciarelli, A., Pantic, M., & Bourlard, H. (2009). Social signal processing: Survey of an emerging domain. [Review]. Image and Vision Computing, 27(12), 1743-1759. doi: 10.1016/j.imavis.2008.11.007.
- Gatica-Perez, Daniel (2009). Automatic nonverbal analysis of social interaction in small groups: A review. *Image and Vision Computing*, 27(12), 1775-1787. doi: http://dx.doi.org/10.1016/i.imgvis.2009.01.004.

Affect monitoring (Zeng et al. 2009)

- Ubiquitous computing needs to move beyond current HCI designs:
 - keyboard + mouse
 - transmission of explicit messages
- Currently "ignoring implicit information about the user, such as changes in the affective state.
- Yet, a change in the user's affective state is a fundamental component of human-human communication.
- Some affective states motivate human actions, and others enrich the meaning of human communication."
- A system should be able to:
 - detect subtle changes in user (affective) behaviour
 - initiate interactions based on this (rather than waiting for commands)

Applications (Zeng et al. 2009)

- Customer services
- Call centers
 - make an appropriate response or pass control over to human operators
- Intelligent automobile systems
 - monitor the vigilance of the driver and apply an appropriate action to avoid accidents
- Game and entertainment industries.
- Affect-related research
 - improve the quality of the research by improving the reliability of measurements and speeding up the currently tedious manual task of processing data
- Personal wellness and assistive technologies
 - automated detectors of affective states and moods, including fatigue, depression, and anxiety

Databases of spontaneous affect (Zeng et al. 2009)

- Human-human conversation
 - Interviews; phone conversations; meetings
- HCI
 - Wizard of Oz; dialogue systems
- Video kiosk
 - Affective video reactions

Universal (visible) emotions

Paul Ekman (1960s, early 70s)

Facial Action Coding System (FACS)

- Happiness
- 2. Surprise
- 3. Anger
- 4. Sadness
- 5. Fear
- 5. Disgust
- 7. [Contempt] added in the 1990s; not uncontroversial.

Hardwired empathy

- Observing the same action in different contexts elicits different levels of mirror neuron activity.
 - Suggests that the mirror neuron system does more than code the observed action ("that's a grasp"). It also codes the intention behind the action ("that's a grasp to drink" or "that's a grasp to clear the table"). [UCLA School of Medicine.]
- Instrumental for interpreting the facial expressions and actions of others.

I'm feeling what you're feeling"

Physiognomy

- System for identifying personality types (incl. criminals) from facial characteristics.
- Aristotle: "noses with thick, bulbous ends belong to persons who are insensitive, swinish".
- Too extreme! Debunked by science.

Illustration from a 19th-century book on physiognomy. [Encyclopaedia Britannica]

Automatic facial expression analysis software

Can automatically detect:

- Valence (positive, negative or neutral responses).
- Emotions (joy, anger, surprise, fear, sadness, disgust, contempt, frustration and confusion).
- Facial landmarks (e.g. corners of mouth)
- · Various set actions/behaviours.
- · Head pose.

Goldberg, Joseph H. (2012). Relating perceived web page complexity to emotional valence and eye movement metrics. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 56(1), 501-505.

Microexpressions

- Brief, involuntary facial expressions:
 - Difficult to conceal or fake.
 - Can last as little as 0.04 seconds (video typically runs at 23 or 25 fps).
 - Computer vision techniques can give precise measurements.

Neuropolitics experiment

- 1200+ online participants
- 140 laboratory-based participants
- Questionnaire data:
 Demographics; political bias; moral foundations; personality traits
- Facial coding of affective response to 10 video clips
 - Debates, interviews, documentaries, infographics

Human vision is very focused

We only see a small portion of the world in detail at any one moment!

Implication

- 1. Large proportion of the brain dedicated to visual processing.
- 2. Limited momentary input.
- 3. Where you are looking *now* is very important and highly informative.

Eye movements

- Eyes have the most active muscles in the body
- Movements even when asleep (REM sleep)
- Fixations (stable, typically about 3 or 4 per second)
- Saccades (ballistic jumps visual suppression)
- Smooth pursuit (tracking moving objects)
- Pupillometry (pupil dilation as an indication of emotional arousal and cognitive load – not just a reaction to light)

Cognitive processing

- Eye-movement data are a good moment-to-moment indicator of visual-cognitive processing.
- Strong Eye-Mind Hypothesis. (Just & Carpenter, 1980)
- Where? (spatial)
 - Eye movements as indicators of overt visual attention:
 where we currently look at (e.g., word in a sentence, object in a scene)
 is where we currently attend to.
- When? (temporal)
 - Fixation durations: increased processing difficulties show in longer fixation times.

A REVOLUTIONARY NEW WAY TO USE YOUR PC. Tobil eye tracking enables new gameplay functions for a completely unique user experience. Let your eyes be the controller and lose yourself in the game. WATCH DOGS 2 WATCH DOGS 2 WATCH TO GENERAL TRACKING THE PROPERTY OF THE

Gaming market

Realistic gaming functions: Armed with new knowledge about your presence, eye movement and corresponding head movement, Tobii eye-tracking enhanced games, including Tom Clancy's The Division, Watchdogs II and Deus Ex: Mankind Divided, allow you to input commands that are more in-tune to real life. Aim at where you look, signal teammates with a glance and navigate a cockpit freely.

System intelligence: Armed with more information about you, including your attention and position in front of the notebook, your machine can now optimize power usage and even trigger more advanced security profiles. A groundbreaking new feature exclusive to Alienware machines.

Game coaching: With new exclusive Overwolf apps, replay your gaze pattern and see where you went wrong. Learn from your mistakes, find new opportunities and crush the competition.

Windows Hello: A revolutionary HD resolution camera with an IR sensor and facial recognition technology allows you to log in with just a look.

[http://www.dell.com/en-us/shop/productdetails/alienware-17-laptop/]

Viewing behaviour: Individual differences & group consensus

Implicit knowledge (PigGate)

Pupillometry

- Changes in pupil dilation due to psychological processes.
- Dilation is not just a reflex to light.
- Reaction to arousal or emotions (positive or negative).
- Evidence of task demand (cognitive load).

Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. *International Journal of Human-Computer Studies*, 59(1-2), 185-198.

Granholm, Eric, & Steinhauer, Stuart R. (2004). Pupillometric measures of cognitive and emotional processes. *International Journal of Psychophysiology*, 52(1), 1-6.

Scheepers, Christoph, Mohr, Sibylle, Fischer, Martin H., & Roberts, Andrew M. (2013). Listening to limericks: A pupillometry investigation of perceivers' expectancy. *PLoS ONE*, 8(9), e74986.

Neuromarketing

http://www.smivision.com

Social sensing (and honest signals)

Schmid Mast, Marianne, Gatica-Perez, Daniel, Frauendorfer, Denise, Nguyen, Laurent, & Choudhury, Tanzeem (2015). Social sensing for psychology: automated interpersonal behavior assessment. Current Directions in Psychological Science, 24(2), 154-160. doi: 10.1177/0963721414560811.

Fig. 1. Stationary social sensing of a dyadic interaction via Microsoft Kinect (for video and depth recording, shown to the front and left of each interaction partner) and Dev-Audio Microcone (for voice recording; shown at center of table).

Social Sensi	ing			157	
	Table 1. Validated Behavior-Extraction Methods				
Extracted cue	s Sensing devices	Key words for describing the algorithms	Examples of nonverbal behaviors extracted	References	
Am and bod postures	y Video; Kinect	Hand likelihood map extraction (optical flow, face detection, edges, skin segmentation); hand tracking; 3D torso-pose extraction	Self-touch, gestures	Marcos-Ramiro, Pizarro- Perez, Marron-Romera, Nguyen, and Gatica- Perez, 2013	
Head pose (a for gaze)	is proxy Video	Dynamic Bayesian Network; contextual prior models; observations, speaking proportion, visual head pose based on exemplars	Cazing	Ba and Odobez, 2011	
Eye gaze	Video; Kinect	SD head-pose tracking from depth data; eye gaze direction tracking from pose-corrected eye appearance	Gazing	Funes and Odobez, 2012	
Pace location motion	and	Frame-based classification between nodding and not- nodding. Fourier representation of face-region optical flow	Nodding	Nguyen, Odobez, and Gatica-Perez, 2012	
Facial Jenure localization FACS-based classification facial expe	and n of	Face detection; facial-feature detection (eye comers and cemer, tip of the nose, mouth comers and center), feature extraction (using Gabor filters), action-unit recognition; expression intensity and dynamics.	Smiling and FACS codes	Lindewort et al., 2011	
Face detectio geometric a		Upper-body detection, head detection inside upper-body areas, head-pose estimation, looking-at-each-other scoring between pairs of heads	Eye contact	Marin, Zisserman, Eichner, and Ferrari, 2014	
Pull-body po	se Video; Kinect	Body-part representation; depth image feature extraction; randomized decision-forest body part classification	Arms on hips, arms crossed	Shotton et al., 2011	
Speech quali	ties Close talk microphone, microphone array,	Speech qualities: voiced/non- voiced classification using hidden Markov models, pitch tracking: speaker segmentation:	Voice energy, pitch, speaking rate	Basu, 2002; Boersma and Weenink, 2013; Kiran et al., 2010; Lu et al., 2012	
	smartphone mic	filter-sum beamforming using an array of microphones			Schmid Mast, et al (2015)
Note: PACS = 1	acial Action Coding System (Ekm	an & Friesen, 1978).			

Finished! Happy or sad?

