
Computational Cognitive Science 2019-2020

Tutorial 4: Model Comparison à la XKCD
Our data in this tutorial comes from a visual motion perception task (Karvelis et al., 2018): participants saw
either moving dots or no stimuli for 3000 milliseconds, then reported the motion of direction, or an absence of
stimuli if no dots were present. The independent variable RISC is a scale of schizotypical traits, measured on
the healthy participants in the study. The dependent variable false.detections is a count of the number
of trials in which participants falsely detected (i.e. hallucinated) stimuli — that is, they reported that moving
dots were present when no dots were shown on that trial. See the original paper for more details.

Consider an initial sample of 62 randomly selected participants (perhaps the first batch of subjects tested).
We’ll load in their data for analysis.
data <- read.csv("sample1.csv")

Inspired by Randall Munroe’s XKCD webcomic (link), we will compare the fit of various models to some
real-world data. As before, we’ll use ggplot to visualize.
library(ggplot2)

base_plot <- ggplot(data) + # pass data to ggplot
aes(RISC, false.detections) + # tell it what to plot on x and y axes respectively
geom_point() + # add scatterplot layer
theme_minimal() # nicer-looking style

base_plot

0

20

40

60

80

10 20 30 40 50
RISC

fa
ls

e.
de

te
ct

io
ns

If you would like to get the full XKCD feel, you can optionally install the xkcd package for a bit more
verisimilitude in plotting! But if you don’t want to, no worries, all the later code will run just fine without it.

1

https://xkcd.com/2048/
http://xkcd.r-forge.r-project.org/

check for xkcd package, install if missing
xkcd_available <- require("xkcd")
if (!xkcd_available) {

install.packages("xkcd", repos="http://cran.uk.r-project.org")
xkcd_available <- require("xkcd")

}

Note: xkcd_available will be false if the installation didn't work,
in which case we'll have to fall back to base_plot
if(xkcd_available) {

check for xkcd font, install if missing
if (!('xkcd' %in% fonts())) {

download.file("http://simonsoftware.se/other/xkcd.ttf",
dest="xkcd.ttf", mode="wb")

system("mkdir ~/.fonts")
system("cp xkcd.ttf ~/.fonts")
#system("cp xkcd.ttf /Library/Fonts") # uncomment if you're running on a Mac
font_import(paths=c("~/.fonts", "/Library/Fonts"), pattern = "[X/x]kcd", prompt=FALSE)
loadfonts()

}

add xkcd layers to the plot we defined above
base_plot <- base_plot +

xkcdaxis(range(data$RISC), range(data$false.detections)) + # make plot axes look xkcd-ish
theme(text=element_text(family="xkcd", size=14)) # use xkcd font

}

Here it is again, in XKCD style
base_plot

Nested models
First, we’ll fit the classic linear model: y = β1x+ β0.
for more details on R's linear model function:
?lm
lm_fit <- lm(false.detections ~ RISC, # formula: y ~ x

data=data)
intercept term is assumed, doesn't need to be specified
so actual formula is y ~ x + 1

summary(lm_fit)

##
Call:
lm(formula = false.detections ~ RISC, data = data)
##
Residuals:
Min 1Q Median 3Q Max
-16.838 -7.461 -2.749 4.469 56.705
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)

2

(Intercept) 4.0445 4.8104 0.841 0.4038
RISC 0.3510 0.1439 2.438 0.0177 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 13.26 on 60 degrees of freedom
Multiple R-squared: 0.09016, Adjusted R-squared: 0.075
F-statistic: 5.946 on 1 and 60 DF, p-value: 0.01773

Look over the summary output. What are the estimated values of the coefficients β0 and β1? What are the
standard errors? Does this look like a reasonable fit to you?

We can define a helper function to plot the model’s predictions.
plot_preds <- function(preds, title="", subtitle="") {

(base_plot + geom_line(aes(y=preds), col="red") + ggtitle(title, subtitle))
}

plot_preds(fitted(lm_fit), # 'fitted' extracts model's predictions for training data
"Linear", "Hey, I did a regression.")

0

20

40

60

80

10 20 30 40 50
RISC

fa
ls

e.
de

te
ct

io
ns

Hey, I did a regression.

Linear

As noted in the original comic, we can also just fit the intercept term, β0, to get a linear model with no slope.
intercept_fit <- lm(false.detections ~ 1, data=data)

summary(intercept_fit)

##
Call:
lm(formula = false.detections ~ 1, data = data)
##
Residuals:
Min 1Q Median 3Q Max

3

https://xkcd.com/2048/

-15.032 -9.032 -3.532 3.968 63.968
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.032 1.751 8.587 4.33e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 13.78 on 61 degrees of freedom
plot_preds(fitted(intercept_fit),

"Linear, no slope", "I'm making a scatterplot but I don't want to.")

0

20

40

60

80

10 20 30 40 50
RISC

fa
ls

e.
de

te
ct

io
ns

I'm making a scatterplot but I don't want to.

Linear, no slope

Exercise: Modify the model-fitting code above to fit a quadratic function, i.e. an order-2 polynomial:
y = β2x

2 + β1x+ β0.
quad_fit <- # TODO *YOUR CODE HERE*

summary(quad_fit)

plot_preds(fitted(quad_fit), "Quadratic", "I wanted a curved line,\nso I made one with math.")

As these are all nested models, we can compare them using the likelihood ratio test in R’s anova function.
anova(intercept_fit, lm_fit,

#quad_fit, # TODO uncomment once you've defined quad_fit
test="LRT") # specify likelihood ratio test

Analysis of Variance Table
##
Model 1: false.detections ~ 1
Model 2: false.detections ~ RISC

4

Res.Df RSS Df Sum of Sq Pr(>Chi)
1 61 11590
2 60 10545 1 1045 0.01475 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Exercise: Can you think of any reasons you might not want to use the likelihood ratio test? Are there other
approaches you could use to compare nested models?

AIC & BIC
A more general approach which does not require models to be nested is to use AIC or BIC.
models = list(intercept_fit, lm_fit

#, quad_fit # TODO uncomment once you've defined quad_fit
)

model_AIC = AIC(intercept_fit, lm_fit
#, quad_fit # TODO uncomment once you've defined quad_fit
)

cbind(model_AIC,
BIC = sapply(models, BIC),
log_lik = sapply(models, logLik))

df AIC BIC log_lik
intercept_fit 2 504.2554 508.5096 -250.1277
lm_fit 3 500.3970 506.7784 -247.1985

Exercise: How do AIC and BIC estimate model complexity? What’s the difference between the two? Are
there cases when you can’t use these metrics?

Held out set
An even better approach to model comparison is to directly predict — as we’re mainly interested in a model’s
ability to generalize to unseen data, evaluating on a sequestered set lets us look at prediction directly, without
even considering model complexity.

Let’s load in the data from the remaining 20 participants (perhaps the second batch tested), and see how
well our models predict their behavior. For simplicity, we’ll use mean squared error to evaluate performance
here, but in most settings log predictive density would be preferred (Gelman et al., 2014).
sample2 <- read.csv("sample2.csv")

Exercise: Calculate the mean squared error (MSE) for each model’s predictions on the new data. (Hint: you
can use the function predict; for example, preds <- predict(lm_fit, sample2) gets the linear model’s
predictions for sample2, which you can then use to calculate MSE.) Which one has the lowest mean squared
error on the new data?

Cross-validation
We can use cross-validation to get a more robust comparison of different models’ ability to generalize to
unseen data, by taking all the data available and systematically using different subsets to estimate test error.
data <- rbind(data, sample2) # combine all our data

n_splits = 6 # specify number of splits to partition

5

assign each row a split
this assumes the rows are randomly ordered
splits = rep_len(1:n_splits, length.out=nrow(data))

you can use `splits` to index your data frame
for example, to test on split 1:
training_data <- data[splits != 1,]
test_data <- data[splits == 1,]

Exercise: Cross-validate the intercept, linear, and quadratic models using the splits defined above. Which
model has the lowest average test error across splits? Do you get different results if you try different numbers
of splits (e.g. by setting n_splits to another value)?

References:
Karvelis, Povilas, Aaron R Seitz, Stephen M Lawrie, and Peggy Seriès (2018). “Autistic Traits, but Not
Schizotypy, Predict Increased Weighting of Sensory Information in Bayesian Visual Integration.” ELife 7.
https://doi.org/10.7554/eLife.34115.

Gelman, Andrew, Jessica Hwang, and Aki Vehtari (2014). “Understanding Predictive Information Criteria
for Bayesian Models.” Statistics and Computing 24:6: 997–1016. https://doi.org/10.1007/s11222-013-9416-2.

6

https://doi.org/10.7554/eLife.34115
https://doi.org/10.1007/s11222-013-9416-2

	Tutorial 4: Model Comparison à la XKCD
	Nested models
	AIC & BIC

	Held out set
	Cross-validation
	References:

