Dirichlet-Multinomials, Dirichlet-Categoricals

and
Hierarchical Bayesian models for learning

linguistic structure

Computational Cognitive Science, Lecture 15
Stella Frank, stella.frank@ed.ac.uk
November 6, 2018



mailto:stella.frank@ed.ac.uk

Today

1. Dirichlet Multinomials, again

By Welleschik - http://commons.wikimedia.org/wiki/File:Lille_Meert2.JPG, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=19506073
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Likelihoods: p(y | 6)

Likelihoods are usually fairly determined by the question
(plus domain knowledge).

- If we want to model heights:
+  ~continuous outcome (cm)

- ~symmetric around the mean
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List of probability distributions 5tion

From Wikipedia, the free encyclopedia

The Free Encyclopedia

e TNe JONNson sU arstrouton
e The Landau distribution
e The Laplace distribution

¢ H: We Want e The Lévy skew alpha-stable distribution or stable distribution is a family of
data and critical behavior; the Cauchy distribution, Holtsmark distribution, L
distribution are special cases.

~CONLINU - oo oot et We've heard of this one

e The map-Airy distribution

e The normal distribution, also called the Gaussian or the bell curve. It is ubi
. . Sym m E Ii.m.it theorem: every variaF)Ie that cf':ln be modelled as a sum of many small
finite mean and variance is approximately normal.
e The Normal-exponential-gamma distribution
e The Normal-inverse Gaussian distribution
° po S |'t Ive o The Pearson Type IV distribution (see Pearson distributions)
e The skew normal distribution

e Student's t-distribution, useful for estimating unknown means of Gaussian

e The noncentral t-distribution
e The skew t distribution




Like  Stan Modeling Language

Likell User’s Guide and Reference Manual

stion
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¥ VIl Discrete Distributions
. Conventions for Probability Functions
- |[f we want to model heights:
. Binary Distributions
Bounded Discrete Distributions
Unbounded Discrete Distributions

Multivariate Discrete Distributions

‘ NCOntiHUOUS OUtcome (Cm) ¥ IX Continuous Distributions

Unbounded Continuous Distributions

Positive Continuous Distributions

. - Sym m e-t ri C aro u n d -th e m ean Non-negative Continuous Distributions
Positive Lower-Bounded Probabilities

Continuous Distributions on [0, 1]

Circular Distributions

Bounded Continuous Probabilities

Distributions over Unbounded Vectors

Simplex Distributions

Correlation Matrix Distributions

Covariance Matrix Distributions




Normal Distribution

Probability density function
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H=0, 02=0.2, == ]
H=0, O?=1.0, mm——
=0, 0%=5.0, == |
H==2, 02=0.5, == -

The red curve is the standard normal distribution

Not so much:

height ~ Normal(165,30)

Exponential

Looks reasonable...

Probability density function

A=0.5 |

A=1 |
A=15 |




Likelihoods: p(y | 6)

Likelihoods are usually mostly determined by the guestion
(plus domain knowledge).

- Word Learning (Frank et al 2009 model):
 need to relate words and objects with a lexicon

+ maylbe other ways of doing this!



Likelihoods: p(y | 6)

Likelihoods are usually mostly determined by the guestion
(plus domain knowledge).

. Marbles world: @ @

- discrete outcomes (colours)

- multiple outcomes (sets of draws)



Likelihoods: p(y | 6)

Likelihoods are usually mostly determined by the guestion
(plus domain knowledge).

Marbles world:
discrete outcomes (colours)

multiple outcomes (sets of draws)

53. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

53.1. Multinomial Distribution




Other uses for the multivariate

- What's the probability of a bunch of words in a text?
(ignoring syntax: "bag of words" model)

- Birthday paradox: what's the probabillity of two of you
having the same birthday?

- Distribution of students to tutorial groups



What's the probability of a bunch of marbles”?

+ Assume we know the distribution of marbles in the bag
0 = [red = 0.1, green = 0.4, blue = 0.5]

- andwesee @ -what'sp(@ |96)?



What's the probability of a bunch of marbles®

+ Assume we know the distribution of marbles in the bag
0 = [red = 0.1, green = 0.4, blue = 0.5]

- andwesee @ -what'sp(@ |96)?
. What about @ @ ?

. What about @ @ ?



What's the probability of a bunch of marbles?

53. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

53.1. Multinomial Distribution

Probability Mass Function
If K€ N, N €N, and 0 € K-simplex, then for y € NK such that S¢_, vk = N,
Multinomial (y|0) = N : 0
ultinomial (y|0) = (yl,---,)/x) 1!—11 K s

where the multinomial coefficient is defined by

( N )_ N!
Viseoos Y/ Tleey V!




What's the probability of a bunch of marbles?

5. Multivap — ~
/ y=(10,10): p(@) p(@)

The multivariate
e\ y=2@,00): p@) p@F°

53.1. Multinomial DistriDere

Probability Mass Function

If Ke N, N € N, and 0 € K-simplex, then for y € NX su,that Z,’f 1 Yk = N,
N )
Multinomial (y|0) = ( ) [T o3,

where the multinomial coefficient is defined by

( N )_ N!
Viveeos k) Tleoy k!




Whags~" ~~%Xunch of marbles?

Multinomial Coefficient:
/ number of sequences giving rise 1but10ns
| to counts y: c integer values, which are

\L y=(1@,1@) > 2/11=2 /
o 900 66

Probability Mass F

IfKeN,NeN,anf p e K-simplex, then for y € NX such that Z,’f_l Yk = N,




What's the probability of a sequence of marbles??

Assume we know the distribution of marbles in the bag
0 = [red = 0.1, green = 0.4, blue = 0.5]
and we see @ and then @:

(@, @|0)=0 @x0 @=0.05

Note: no multinomial coefficient here!

51.5. Categorical Distribution

Probability Mass Functions

If N e N, N > 0, and if 0 € RN forms an N-simplex (i.e., has nonnegative entries
summing to one), then for y € {1,..., N},

Categorical (y|0) = 0,,.




Ok, but what if we don't know 67

- Now we know how to calculate P(y | ), if we have 6
- But we generally don't:
-+ Can't inspect inside the bag of marbles

- More realistically: we can only see a finite amount of
text, but we want to estimate the distribution over
words for the language as a whole




One method: search for a good 6

v = (@ @) [with Multinomial Likelihood]
. 9 =[R=0.3, G=0.3, B=0.3]: P(y | 6) = 0.22222
. 9 =[R=0.2, G=0.7, B=0.1]: P(y | 6) = 0.04
. B =[R=0.4, G=0.1, B=0.5]: P(y | 8) = 0.4

. @ =[R=0.5, G=0.0, B=0.5]: P(y | 8) = 0.5



One method: search for a good 6

- (9@)
- [R=0.3, G=0.3, B=0.3]: P(y | 6) = 0.22222
- [R=0.2, G=0.7, B=0.1]: P(y | ©) = 0.04
— [R=0.4, G=0.1, B=0.5]: P(y | ©) =

— [R=0.5, G=0.0, B=0.5]: P(y \ 0) =

‘ ThIS is MLE, Maximum Likelihood Estimation: |

argmax_ 9 P(y | B) |



One method: search for a good 6

v=(@@®)

- 6 =[R=0.3, G=0.3, B=0.3]. P(y | §) = 0.22222

-+ B =[R=0.2, do we really
{ want to rule out }

. 9=[R=0.4,G=0.\, 972

. 9=[R=0.5, G=0.0. B=0.5]: Py | 6) = 0.5



Frequentists vs. Bayesians

- Frequentists believe that there is a single true 6,
and our goal is to find it (e.g. using MLE),
by formulating hypotheses and testing them (p-values)

-+ Bayesians think it's more useful to consider a distribution
over possible 6, 1.e. P(0).
Begin with a prior notion of P(6) and update it based on
data, using Bayes' rule:

P(y|0)P(0)

PO|y) =
O =T 10P0)




Bayes needs a prior!

- In the marbles example, what is 67 What's its type”?

P(y|O)P(6)
L POIOP©)

P0|y) =




Bayes needs a prior!

- In the marbles example, what is 67 What's its type?
- a probability distribution (over colours)

- What's P(©)7?

P(y|)P(6)
[, P(y|0)P(@)

P0|y) =




Bayes needs a prior!

In the marbles example, what is 67 What's its type”?
- a probabillity distribution (over colours)

What's P(B)"
- a probabillity distribution over probabillity distributions

This prior encodes what kind of
distributions we think are likely a priori

P(y|)P(6)
[, P(y|0)P(@)

P0|y) =




Hierarchical Bayesian Model, again

oday we are only considering levels 1 and 2.

Level 3: Prior about

bags in general Au
Level 2: Bags in o,p
general / / \\
l ) ) 3
Level 1: Bag ’
proportions J I I
l 000
Data Q00 000
\"’) \"’)




Bayes needs a prior!

62. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K. A K-
dimensional vector @ is a unit K-simplex if 0y > 0 for k € {1,...,K} and >}_, Ox = 1.

62.1. Dirichlet Distribution

Probability Density Function

If K e Nand « € (R")X, then for 6 € K-simplex,

F(Zf=10‘k> K
Moo T(ow) 1

Xr—1
k .

Dirichlet(0|x) =

Warning: If any of the components of 0 satisfies 8; = 0 or 0; = 1, then the prob-
ability is 0 and the log probability is —co. Similarly, the distribution requires strictly
positive parameters, with «; > 0 for each i.




Bayes needs a prior!

62. Simplex Distributions = —"""""

The simplex probabilities have support on the up /

dimensional vector 0 is a unit K-simplex if 6y >f Gamma function:
| '(n) = (n-1)!
62.1. Dirichlet Distribution (if n is an integer)

Probability Density Function

If K € Nand & € (R*)*, then for 0 € K-simple o

FK: ) X
Dirichlet(0|x) = —% Kl ) 1_[ 0.
k=1 L (k) 13

Warning: If any of the components of 0 satisfies 8; = 0 or 6; = 1, then the prob-
ability is O and the log probability is —oo. Similarly, the distribution requires strictly
positive parameters, with «; > 0 for each i.




Bayes needs a prior!

62. Simplex Distributions

The simplex probabilities have support on the uy
dimensional vector 0 is a unit K-simplex if 0y >f

Gamma function:

m [ I'(n) = (n-1)!
T 1l = - - -
fl =\ (if n is an integer)
w L =\
. | .
3 | v =
| : |
2 l | e
\ l
N i n
3 > \: 1A - O(]\—l
, Ninngy AT 2 8 O
; : -
» ‘ _ - = 0 or 0; = 1, then the prob-
- IN-9% 2 | distribution requires strictly
r ¥ -3 2 -7 7 / 2 7 ¢




Bayes needs a prior!

62. Simplex Distributions

The simplex probabilities have support on the uyp’ | This iIs the
dimensional vector 0 is a unit K-simplex if 0y “ normalising constant

62.1. Dirichlet Distribution J Dll"(@l‘ a) 4o’
\ o

Probability Density Function

If K e Nand « € (R")X, then for 6 € K-simplex, -~

F(Zle (Xk) ﬁ 9’(<Xk—1.

Dirichlet(0|x) =
Hf:l [(ok) gy

Warning: If any of the components of 0 satisfies 8; = 0 or 6; = 1, then the prob-
ability is O and the log probability is —oo. Similarly, the distribution requires strictly
positive parameters, with «; > 0 for each i.




Posterior distribution of Dirichlet-Categorical

P(0ly, a) o< P(y|0)P(0|cx)
- Cat( \9)Dir(«9|a)

_HHN/(HGOA/( 1 Zk 1O‘k)

— i T{)

Nk O{k—].
x H 0, 40"
k=1
K
_ Nyg+aoy—1
=[]
k=1

where Ny is the number of items of category k in y.



Posterior distribution of

Dirichlet-Categorical

POy, a) oc P(y|0)P(0]cx)
= Cat(y]@)Dir(H]a)

_HQNkHHak 1 Zk 1O‘k)

kr(@ )

/Vk Q{k—l
x H 0,40
k=1
K
L Ni+a,—1
=114
k=1

where Ny is the number of items of category k in y.

Posterior is also a Dirichlet: P(0|y, a) = Dir(a’),
where o' = a+y; i.e. o) = ay + y«.



Posterior distribution of Dirichlet-Categorical

Posterior is also a Dirichlet: P(8|y,a) = Dir(d/),
where o/ = a+y; ie o) = ax + yk.

This is called conjugacy: Prior and posterior are same type of
distribution, given a certain type of likelihood.

(Dirichlet is the conjugate prior for the categorical and the
multinomial.)

Posterior Dirichlet is parameterised by counts in data y plus
“pseudocounts’ «.

Large values of a (or a3) can thus overwhelm the data; these are
“stronger” priors.



What if we care about prediction, not 67

What's the colour of the next marble going to be”

We can calculate the predictive posterior, while
marginalising over 0: this takes all possible 8 into account

P(y=@ | D, q)

p(y = kID,a) = fo P(y = k|)P(8] D, a)d6



Predictive Posterior Probability

p(y = k|D,a) = /HP(y = k|0)P(0|D, o)db

K
_ /(9/( H HNk+ak_1 r(%:k:]. Nk T+ Oﬂk) do

B Ny + ay
> kek Ni + o

where N, is the number (count) of items in category k in D.

If o prior is symmetric, such that oy = « for all k,

N
ply = k|D,a) = /vf;?ak




Summary

Dirichlet-Multinomial and Dirichlet-Categorical distributions
may look complex

But certain properties are simple:

Posterior is a Dirichlet updated by counts in data:
PO|y,a) x P(y|0)P(0|a) ~ Dir(a +y)

Predictive posterior is normalised counts + prior
Vi T O
Zk' Yk’ + A

- The effect of prior a: "pseudocounts” of data expected a priori

P(k|y,a) =



—xtra: Non-parametric distributions

Parametric distributions (e.g. Dirichlet, Multinomial)
require specifying the number of categories K.

If we don't know, or don't want to specify K,
we can use non-parametric models

- e.9. Dirichlet Process(a, H):
- A IS concentration parameter, H Is base distribution
- Predictive posterior:

a Yk

p(ynew — knew) — o4+ — 1 p(ynew — kexists) — a4+ n+ 1




The Learnability of Abstract Syntactic Principles,
Perfors, Tenenbaum & Regier (2009)

By Welleschik - http://commons.wikimedia.org/wiki/File:Lille_Meert2.JPG, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=19506073

(There will be zero Dirichlets in this part!)



"Poverty of Stimulus” argument (Chomsky et alia)

1. Language is complex (see example)

2. Children do not hear enough
iInstances of [complex example] to
possibly learn it

3. Ergo children must have innate
iInguistic knowledge about
complex example]




Complex example: Aux-raising in English questions

"The bear Is eating the fish's breakfast”

"Is@eaﬂng the fish's breakfast””



Complex example: Aux-raising in English questions

"The students who are in the classroom are still awake’

"Are the studentsiwho in the classroom are still awake”?"
"Are the students who are in the classroom\still awake?"



Complex example: Aux-raising in English questions

"The students who are in the classroom are still awake’

/\Linear rule: move the first auxiliary verb
"Are the studentsiwho in the classroom are still awake”?"
"Are the students who are in the classroom\still awake?"

Hierarchical rule: move the aux in main clause



AuX raising In other languages

German:
'Sind die Studenten, die in der Vorlesung sind,\wach®?"

Finnish (thanks, mom):

Polka, joka on onnellinen, on leikkimassa
(The boy who Is happy is playing)

"Onko poika, joka on onnellinen,jleikkimassa”"




Language "acquisition device"

-+ Even If this was an English-only phenomena
(which it isn't):

-+ Any Infant who can learn any other language can also
learn English, so:

- (Learning) the aux-raising rule has to be part of the
linguistic capabilities of all infants.

- But: English child-directed speech contains only ~0.05%
complex interrogatives - can this be enough to learn?



Counter "Poverty of Stimulus” (Perfors et al)

1. Language is complex

2. Sure - and children learn it as a
system

3. Arguing from a single (type of)
example is silly

‘ |

4. Overhypotheses!



Counter "Poverty of Stimulus” (Perfors et al)

To put this point another way, while it may be sensible to
ask what a rational learner can infer about language as a
whole without any language-specific biases, it is less sensi-
ble to ask what a rational learner can infer about any single
specific linguistic rule (such as auxiliary-fronting). The need

to acquire a whole system of linguistic rules together im-
poses constraints among the rules, so that an a priori unbi-
ased learner may acquire constraints that are based on the
other linguistic rules it must learn at the same time.




Hierarchical model of linguistic structure

Grammar

l P(D | G)

Sentences
(data D)



Hierarchical model of linguistic structure

Grammar P(G | D) « P(D | G) P(G)

l Need to define:
Sentences
(data D) - prior over G

- space of grammars




Hierarchical model of linguistic structure

Grammar Type

P(G|T) l

Grammar

l

Sentences
(data D)

P(T, G| D) =« P(D|G) P(GIT) P(T)



Space of Grammar Types

* NO grammar: one state that allows all possible sentences
- flat grammar: memorises all sentences in the corpus

+ regular grammars: represent sentences linearly
(different numbers of non-terminals, rules)

- context-free grammars: represent sentences hierarchically

All sentences represented as sequences of syntactic categories.

All grammars are probabilistic: assign a probability to a sentence.



Hierarchical model of linguistic structure

P(T) ~ uniform Grammar Type

l

P(G|T) prefers Grammar
simpler grammars l

of a given type

Sentences
(data D)

P(T, G| D)= P(D|G) P(GT) P(T)

Approach: find best grammar of each type, and evaluate its
posterior probabillity, given some plausible data D.



Results by sentence frequency

Table 2

Log prior, likelihood, and posterior probabilities of each hand-designed grammar for each level of evidence. Because numbers are negative, smaller absolute
values correspond to higher probability. If two grammars have log probabilities that differ by n, their actual probabilities differ by e"; thus, the best hierarchical
phrase-structure grammar CFG-L is e'°! (~10*®) times more probable than the best linear grammar REG-M. Bold values indicate the highest posterior score at
each level.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L
Level 1 Prior -99 —148 —-124 —-117 -94 —155 —-192
Likelihood -17 -20 -19 —-21 -36 -27 27
Posterior -116 —168 —143 —138 -130 —-182 -219
Level 2 Prior —630 —456 —442 411 —-201 —357 —440
Likelihood —-134 —147 —157 —-162 —-275 —-194 —-177
Posterior —764 —603 —-599 —-573 -476 —551 —-617
Level 3 Prior —-1198 —663 —-614 —-529 211 —454 —-593
Likelihood —282 —-323 —-333 —-346 —553
Posterior —1480 —-986 —-947 —875 —-764
Level 4 Prior —-5839 —1550 —-1134 -850 —-234
Likelihood —1498 —-1761 —-1918 —-2042 —-3104
Posterior —7337 —-3311 —-3052 —2892 —3338
Level 5 Prior -10,610 —-1962 -1321 —-956 —244
Likelihood —2856 —-3376 —3584 —3816 —-5790
Posterior —13,466 —5338 —4905 4772 —6034
Level 6 Prior —-67,612 —-5231 —2083 —-1390 —257
Likelihood —-18,118 —24,454 —25,696 —-27,123 —-40,108
Posterior —85,730 —29,685 —-27,779 —-28,513 —40,365

Data from higher levels include more infrequent sentence types



Complex Aux-questions

Table 7

Ability of each grammar to parse specific sentences. The complex declarative sentence “Eagles that are alive can fly” occurs in the Adam corpus. Only the
context-free grammars can parse the corresponding complex interrogative sentence.

Type In input? Example Can parse?

FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L

Decl Simple Eagles can fly. (n aux vi)

Y Y Y Y Y
Int Simple Y Can eagles fly? (aux n vi) Y Y Y Y
Decl Complex Y Eagles that are alive can fly. (n comp aux adj aux vi) Y Y Y Y
Int Complex N Can eagles that are alive fly? (aux n comp aux adjvi) N N N N
Int Complex N *Are eagles that alive can fly? (aux n comp adj auxvi) N N N N

+1-state can parse everything (by construction)

+ Only CFGs parse the correct form of the question and
fail to parse the incorrect form



Summary

-+ A learner with the representational capacity for both
flat (regular) and hierarchical (context-free) grammars
can infer, from child-directed speech data,
that hierarchical structures capture the data better.

»+ Such a grammar can also correctly generalise to new
structures, such as complex questions.

No Initial bias towards hierarchy or particular linguistic
structures is necessary.



Next:

Words as high-dimensional objects (not discrete atomic
categories), capturing semantics, syntax, phonology, etc.

s this representation cognitively realistic’?

How can we discover these representations”?

y

. f - :
‘ - e
’P‘ ; - ’
e

And now for something completely different




