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Today

1. Dirichlet Multinomials, again 
 

2. The Learnability of Abstract Syntactic Principles

By Welleschik - http://commons.wikimedia.org/wiki/File:Lille_Meert2.JPG, CC BY-SA 3.0,  
https://commons.wikimedia.org/w/index.php?curid=19506073
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θ ∼ Dirichlet(α)
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Likelihoods: p( y | θ)

Likelihoods are usually fairly determined by the question 
(plus domain knowledge). 

• If we want to model heights: 

• ~continuous outcome (cm) 

• ~symmetric around the mean



Likelihoods

Likelihoods are usually mostly determined by the question 
(plus domain knowledge). 

• If we want to model heights: 

• ~continuous outcome (cm) 

• ~symmetric around the mean 

• positive

We've heard of this one



Likelihoods

Likelihoods are usually mostly determined by the question 
(plus domain knowledge). 

• If we want to model heights: 

• ~continuous outcome (cm) 

• ~symmetric around the mean



Looks reasonable...

height ∼ Normal(165,30)

Not so much:



Likelihoods: p( y | θ)

Likelihoods are usually mostly determined by the question 
(plus domain knowledge). 

• Word Learning (Frank et al 2009 model): 

• need to relate words and objects with a lexicon 

• maybe other ways of doing this!
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Likelihoods: p( y | θ)

Likelihoods are usually mostly determined by the question 
(plus domain knowledge). 

• Marbles world: 

• discrete outcomes (colours) 

• multiple outcomes (sets of draws) 



Other uses for the multivariate

• What's the probability of a bunch of words in a text? 
(ignoring syntax: "bag of words" model) 

• Birthday paradox: what's the probability of two of you 
having the same birthday? 

• Distribution of students to tutorial groups



What's the probability of a bunch of marbles?

• Assume we know the distribution of marbles in the bag  

• and we see         - what's p( 🔵  | θ)?

θ = [red = 0.1, green = 0.4, blue = 0.5]

🔵



What's the probability of a bunch of marbles?

• Assume we know the distribution of marbles in the bag  

• and we see         - what's p( 🔵  | θ)? 

• What about 🔵 🔴 ? 

• What about 🔵 🔵 ?

θ = [red = 0.1, green = 0.4, blue = 0.5]

🔵



What's the probability of a bunch of marbles?



What's the probability of a bunch of marbles?

y= (1 🔵, 1 🔴): p(🔵)1  p(🔴)1 

y= (2 🔵, 0 🔴): p(🔵)2  p(🔴)0



What's the probability of a bunch of marbles? 
Multinomial Coefficient: 

number of sequences giving rise 
to counts y:   

y= (1 🔵, 1 🔴) ->  2!/1! = 2 
🔵 🔴 + 🔴 🔵 



What's the probability of a sequence of marbles?

• Assume we know the distribution of marbles in the bag  

• and we see  🔵 and then 🔴:  
     p( 🔵 , 🔴 | θ) =  θ_ 🔵 x θ_🔴 = 0.05  
     Note: no multinomial coefficient here! 
   
        

θ = [red = 0.1, green = 0.4, blue = 0.5]



Ok, but what if we don't know θ?

• Now we know how to calculate P(y | θ), if we have θ 

• But we generally don't: 

• Can't inspect inside the bag of marbles 

• More realistically: we can only see a finite amount of 
text, but we want to estimate the distribution over 
words for the language as a whole



One method: search for a good θ

y = ( 🔵 🔴 ) [with Multinomial Likelihood] 

• θ = [R=0.3, G=0.3, B=0.3]: P(y | θ) = 0.22222 

• θ = [R=0.2, G=0.7, B=0.1]: P(y | θ) = 0.04 

• θ = [R=0.4, G=0.1, B=0.5]: P(y | θ) = 0.4 

• θ = [R=0.5, G=0.0, B=0.5]: P(y | θ) = 0.5 



One method: search for a good θ

y = ( 🔵 🔴 ) 

• θ = [R=0.3, G=0.3, B=0.3]: P(y | θ) = 0.22222 

• θ = [R=0.2, G=0.7, B=0.1]: P(y | θ) = 0.04 

• θ = [R=0.4, G=0.1, B=0.5]: P(y | θ) = 0.4 

• θ = [R=0.5, G=0.0, B=0.5]: P(y | θ) = 0.5 

This is MLE, Maximum Likelihood Estimation: 
argmax_θ P(y | θ)



One method: search for a good θ

y = ( 🔵 🔴 ) 

• θ = [R=0.3, G=0.3, B=0.3]: P(y | θ) = 0.22222 

• θ = [R=0.2, G=0.7, B=0.1]: P(y | θ) = 0.04 

• θ = [R=0.4, G=0.1, B=0.5]: P(y | θ) = 0.4 

• θ = [R=0.5, G=0.0, B=0.5]: P(y | θ) = 0.5 

do we really 
want to rule out 

💚 ? 



Frequentists vs. Bayesians

• Frequentists believe that there is a single true θ, 
and our goal is to find it (e.g. using MLE),  
by formulating hypotheses and testing them (p-values) 

• Bayesians think it's more useful to consider a distribution 
over possible θ, i.e. P(θ).  
Begin with a prior notion of P(θ) and update it based on 
data, using Bayes' rule:

P(θ |y) =
P(y |θ)P(θ)

∫
θ′�

P(y |θ)P(θ′ �)



Bayes needs a prior!

• In the marbles example, what is θ? What's its type?

P(θ |y) =
P(y |θ)P(θ)

∫
θ′�

P(y |θ)P(θ′ �)



Bayes needs a prior!

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?

P(θ |y) =
P(y |θ)P(θ)

∫
θ′�

P(y |θ)P(θ′ �)



Bayes needs a prior!

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?  
     - a probability distribution over probability distributions 

• This prior encodes what kind of  
distributions we think are likely a priori

P(θ |y) =
P(y |θ)P(θ)

∫
θ′�

P(y |θ)P(θ′ �)



We need a prior!

Data

Level 1: Bag 
proportions

θ1 θ2 θ3

Level 2: Bags in 
general

α,β

θ4

What we want is to learn this knowledge by putting a prior on our prior

Level 3: Prior about 
bags in general λ,µ

Hierarchical Bayesian Model, again
Today we are only considering levels 1 and 2.



Bayes needs a prior!
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Gamma function: 
Γ(n) = (n-1)! 

(if n is an integer)



Bayes needs a prior!

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?  
  - a probability distribution over probability distributions (!)

Gamma function: 
Γ(n) = (n-1)! 
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Bayes needs a prior!

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?  
  - a probability distribution over probability distributions (!)

This is the 
normalising constant 

∫θ′�
Dir(θ′�|α)dθ′�



P(✓|y ,↵) / P(y |✓)P(✓|↵)

= Cat(y |✓)Dir(✓|↵)

=
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k
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i=k �(↵k)

/
KY

k=1

✓Nk
k ✓↵k�1

k
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k

where Nk is the number of items of category k in y .

Posterior is also a Dirichlet: P(✓|y ,↵) = Dir(↵0
),

where ↵0
= ↵+ y ; i.e. ↵0

k = ↵k + yk .

Posterior distribution of Dirichlet-Categorical
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Posterior is also a Dirichlet: P(✓|y ,↵) = Dir(↵0
),

where ↵0
= ↵+ y ; i.e. ↵0

k = ↵k + yk .

This is called conjugacy: Prior and posterior are same type of

distribution, given a certain type of likelihood.

(Dirichlet is the conjugate prior for the categorical and the

multinomial.)

Posterior Dirichlet is parameterised by counts in data y plus

“pseudocounts” ↵.

Large values of ↵ (or ↵�) can thus overwhelm the data; these are

“stronger” priors.

Posterior distribution of Dirichlet-Categorical



What if we care about prediction, not θ?

What's the colour of the next marble going to be? 

We can calculate the predictive posterior, while 
marginalising over θ: this takes all possible θ into account 

P(y=🔵 | D, α)



p(y = k |D,↵) =

Z

✓
P(y = k |✓)P(✓|D,↵)d✓

=
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where Nk is the number (count) of items in category k in D.

If ↵ prior is symmetric, such that ↵k = ↵ for all k ,

p(y = k |D,↵) = Nk+↵k
N+K↵

Predictive Posterior Probability



Summary

• Dirichlet-Multinomial and Dirichlet-Categorical distributions 
may look complex 

• But certain properties are simple: 

• Posterior is a Dirichlet updated by counts in data:  

• Predictive posterior is normalised counts + prior 

• The effect of prior α: "pseudocounts" of data expected a priori

P(θ |y, α) ∝ P(y |θ)P(θ |α) ∼ Dir(α + y)

P(k |y, α) =
yk + αk

∑k′ � yk′� + αk′�



Extra: Non-parametric distributions

• Parametric distributions (e.g. Dirichlet, Multinomial) 
require specifying the number of categories K. 

• If we don't know, or don't want to specify K,  
we can use non-parametric models 

• e.g. Dirichlet Process(α, H): 
   - α is concentration parameter, H is base distribution  
   - Predictive posterior:

p(ynew = knew) =
α

α + n − 1
p(ynew = kexists) =

yk

α + n + 1



The Learnability of Abstract Syntactic Principles, 
Perfors, Tenenbaum & Regier (2009)

By Welleschik - http://commons.wikimedia.org/wiki/File:Lille_Meert2.JPG, CC BY-SA 3.0,  
https://commons.wikimedia.org/w/index.php?curid=19506073

(There will be zero Dirichlets in this part!)



"Poverty of Stimulus" argument (Chomsky et alia)

1. Language is complex (see example) 

2. Children do not hear enough 
instances of [complex example] to 
possibly learn it 

3. Ergo children must have innate 
linguistic knowledge about 
[complex example]



Complex example: Aux-raising in English questions

"The bear is eating the fish's breakfast" 

"Is the bear eating the fish's breakfast?" 



Complex example: Aux-raising in English questions

"The students who are in the classroom are still awake" 

"Are the students who in the classroom are still awake?" 

"Are the students who are in the classroom still awake?" 



Complex example: Aux-raising in English questions

"The students who are in the classroom are still awake" 

"Are the students who in the classroom are still awake?" 

"Are the students who are in the classroom still awake?" 

Linear rule: move the first auxiliary verb

Hierarchical rule: move the aux in main clause



Aux raising in other languages

German: 

"Sind die Studenten, die in der Vorlesung sind, wach?" 

Finnish (thanks, mom): 

Poika, joka on onnellinen, on leikkimässä  
(The boy who is happy is playing)  

 "Onko poika, joka on onnellinen, leikkimässä?" 



Language "acquisition device"

• Even if this was an English-only phenomena 
(which it isn't): 

• Any infant who can learn any other language can also 
learn English, so: 

• (Learning) the aux-raising rule has to be part of the 
linguistic capabilities of all infants. 

• But: English child-directed speech contains only ~0.05% 
complex interrogatives - can this be enough to learn?



Counter "Poverty of Stimulus" (Perfors et al)

1. Language is complex 

2. Sure - and children learn it as a 
system 

3. Arguing from a single (type of) 
example is silly 

4. Overhypotheses!



Counter "Poverty of Stimulus" (Perfors et al)

1. Language is complex 

2. Sure - and children learn it as a 
system 

3. Arguing from a single (type of) 
example is silly 

4. Overhypotheses!



Hierarchical model of linguistic structure

Grammar

Sentences

(data D)

P(D | G)



Hierarchical model of linguistic structure

Grammar

Sentences

(data D)

P(G | D) ∝ P(D | G) P(G)

Need to define: 

- prior over G 

- space of grammars



Hierarchical model of linguistic structure

Grammar

Sentences

(data D)

P(G | T)

Grammar Type

P(T, G| D)∝ P(D|G) P(G|T) P(T)



Space of Grammar Types

• no grammar: one state that allows all possible sentences 

• flat grammar: memorises all sentences in the corpus 

• regular grammars: represent sentences linearly  
(different numbers of non-terminals, rules) 

• context-free grammars: represent sentences hierarchically  

All sentences represented as sequences of syntactic categories. 

All grammars are probabilistic: assign a probability to a sentence.



Hierarchical model of linguistic structure

Grammar

Sentences

(data D)

Grammar Type

P(T, G| D)∝ P(D|G) P(G|T) P(T)

P(T) ~ uniform

P(G|T) prefers  
simpler grammars 

 of a given type 

Approach: find best grammar of each type, and evaluate its 
posterior probability, given some plausible data D.



Results by sentence frequency

Data from higher levels include more infrequent sentence types



Complex Aux-questions

• 1-state can parse everything (by construction) 

• Only CFGs parse the correct form of the question and 
fail to parse the incorrect form



Summary

• A learner with the representational capacity for both 
flat (regular) and hierarchical (context-free) grammars 
can infer, from child-directed speech data, 
that hierarchical structures capture the data better. 

• Such a grammar can also correctly generalise to new 
structures, such as complex questions. 

• No initial bias towards hierarchy or particular linguistic 
structures is necessary.



Next:

Words as high-dimensional objects (not discrete atomic 
categories), capturing semantics, syntax, phonology, etc. 

• Is this representation cognitively realistic? 

• How can we discover these representations?


