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Hierarchical Bayesian Models

• Modelling concept: "priors over priors" 
Leads to extremely powerful & flexible models


• Cognitive concept: "overhypotheses" 
We can have higher-level hypotheses about the 
probability of lower-level hypotheses


• Concrete implementation: Dirichlet priors over 
multinomial likelihoods



Lecture 11: Higher order 
knowledge

Computational Cognitive Science

Slides today are from Amy Perfors and Danielle Navarro's  
excellent Computational Cognitive Science course, 

online at https://compcogscisydney.org/ccs/

https://compcogscisydney.org/ccs/


What do we mean by higher-level knowledge?

Hypothesis space is the set of possible 
“true” distributions from which the 

colours in the box were drawn

Each 
hypothesis is 
one possible 
distribution θ

θ1

Put another way, each 
hypothesis is a theory about the 

nature of the true situation

θ2 θ3



What do we mean by higher-level knowledge?

We can also form theories about the nature of the hypotheses 
themselves: these theories are called overhypotheses

hypotheses

overhypothesesbags tend to have 
multiple colours

colours tend (not to) be 
uniformly distributed

θ1 θ2 θ3



Feature variability: one kind of overhypothesis

Simple categorisation: 
figuring out which things “go together”



Feature variability: one kind of overhypothesis

More complex categorisation: 
learning what kind of rules or tendencies govern

how categories are organised

cat
cup

Second-order knowledge (over-hypothesis): 

(solid) noun categories are organised by shape

ball



Allows generalisation based on one data point!

Which of the two items on the right are daxes?

dax



Allows generalisation based on one data point!

The bias to categorise by shape is called the shape bias.

dax



We know it is learned because it emerges more rapidly if 
children receive special training

“wib”

“lug”

“zup”
“div”

17-month-olds given 
labels for 4 artificial 
categories:

After 8 weeks of 
training,19-month-olds 
show the shape bias. 

The shape bias emerges at around two years

Smith et al., 2002. Object name learning provides 
on-the-job training for attention.  Psych. Sci.



The shape bias emerges at around two years

Plus, it helps them when learning other vocabulary!

Intuitively, children must be learning this overhypothesis about 
nouns based on the distribution of shape features in early words



It’s not just the shape bias though..

Other categories are organised in different ways!

Non-solid substances tend to be organised by colour or texture, 
not shape



It’s not just the shape bias though..

Over developmental time, children learn multiple categories along with 
multiple ways of categorising them (“kinds”)

‣ 24 months: count nouns organised by 
shape 

‣ 24 months: foods organised by colour

‣ 30 months: non-solids organised by 
texture

‣ 30 months: animates organised by shape 
and texture                                                



How can we understand this learning?

What kind of model can -- like people -- learn on 
multiple levels of abstraction (both hypotheses and 

overhypotheses), with multiple kinds at once?



A Bayesian model for overhypothesis learning

‣Visualise categories as bags of features; to keep things 
simple let’s restrict ourselves to one kind and one feature

‣First-order learning involves realising that category 1 is all 
blue, category 2 is all red, and so forth

We capture this raw data y with a multinomial distribution. In essence, each 
multinomial θ gives the probability distribution over each colour

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3



A Bayesian model for overhypothesis learning

‣Visualise categories as bags of features; to keep things 
simple let’s restrict ourselves to one kind and one feature

‣First-order learning involves realising that category 1 is all 
blue, category 2 is all red, and so forth

We capture this raw data y with a multinomial distribution. In essence, each 
multinomial θ gives the probability distribution over each colour

Here, n is the number of balls, k is the number of feature values there are in 
total, and yi is the number of balls with that feature value



Likelihoods: p( y | θ)

Form of the likelihood (i.e. which distribution to use) is 
determined (or at least constrained) by the form of the data 

• Marbles world: 🔵 🔴 

• discrete outcomes (colours) 

• multiple outcomes (sets of draws) 



Likelihoods: p( y | θ)

Likelihoods are usually mostly determined by the question 
(plus domain knowledge). 

• Marbles world: 

• discrete outcomes (colours) 

• multiple outcomes (sets of draws) 



Other uses for the multinomial

• What's the probability of a bunch of words in a text? 
(ignoring syntax: "bag of words" model) 

• Birthday paradox: what's the probability of two of you 
having the same birthday? 

• Distribution of students to tutorial groups



What's the probability of a bunch of marbles? 
(i.e., likelihood, aka probability of the evidence)

• Assume we know the distribution of marbles in the bag  

• and we see         - what's p( 🔵  | θ)?

θ = [red = 0.1, green = 0.4, blue = 0.5]

🔵



• Assume we know the distribution of marbles in the bag  

• and we see         - what's p( 🔵  | θ)? 

• What about 🔵 🔴 ? 

• What about 🔵 🔵 ?

θ = [red = 0.1, green = 0.4, blue = 0.5]

🔵

What's the probability of a bunch of marbles? 
(i.e., likelihood, aka probability of the evidence)



What's the probability of a bunch of marbles? 
(i.e., likelihood, aka probability of the evidence)



What's the probability of a bunch of marbles?

y= (1 🔵, 1 🔴): p(🔵)1  p(🔴)1 

y= (2 🔵, 0 🔴): p(🔵)2  p(🔴)0



What's the probability of a bunch of marbles? 
Multinomial Coefficient: 

number of sequences giving rise 
to counts y:   

y= (1 🔵, 1 🔴) ->  2!/1! = 2 
🔵 🔴 + 🔴 🔵 



What's the probability of a sequence of marbles?

• Assume we know the distribution of marbles in the bag  

• and we see  🔵 and then 🔴:  
     p( 🔵 , 🔴 | θ) =  θ🔵 x θ🔴 = 0.05 
     Note: no multinomial coefficient here! 
   
        

θ = [red = 0.1, green = 0.4, blue = 0.5]



Assumptions of multinomial/categorical distributions

What assumptions do these distributions make about how 
the data is generated? 

Would you use a multinomial or a categorical to model: 

• Someone's outfit (as draws from a closet)? 

• Language (as draws from a vocabulary)?



Assumptions of multinomial/categorical distributions

Assumptions these distributions make about how the data 
is generated: 

• Independence between draws (draws are iid: 
independently and identically distributed) 

• Variables are categorical; no structure or relations 
between variables (e.g. no ordering, similarity).



We need a prior!

However, in order to calculate p(θ|y), which is what we need to be able to 
go from the raw data y to the inferred category features, we need a prior 
over those features.

A natural prior to use is called the Dirichlet prior.

* The reason it is natural is that when combined with the multinomial, the result is still a multinomial, 
so the math is a lot easier. (This property is called conjugacy). Also, it’s straightforwardly interpretable



We need a prior!

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3

Level 2: Bags in 
general

Dirichlet prior



We need a prior!

A Dirichlet distribution consists of two elements:

α = concentration parameter
β = base distribution

distribution of features 
amongst the entire 

dataset

tendency for features 
to be uniform in any 

one category



Dirichlet parameterisations

• �  :  �  is a vector of non-negative values 

(and no constraint on � )


• �  : �  is a probability distribution 

(�  and all � ); �  is a scalar


• �  : scalar parameter with implied uniform �
distribution

θ ∼ Dirichlet( ⃗α ) ⃗α
K

∑
i=0

αi

θ ∼ Dirichlet(α ⃗β ) ⃗β
K

∑
i=0

βi = 1 βi ≥ 0 α

θ ∼ Dirichlet(α) ⃗β



What's this Dirichlet doing in my prior?

• What's θ? 

• What's P(θ)?

P(θ |y) =
P(y |θ)P(θ)

∫
θ′�

P(y |θ′ �)P(θ′�)



What's this Dirichlet doing in my prior?

• What's θ? 

• Parameters of the multinomial distribution over marbles 

• Form: a vector of on-negative numbers that sum to 1: 
a probability distribution 

• What's P(θ)?  

• Prior probability distribution over θ 

• Form: a distribution over distributions 

• "Which θ are a-priori more probable?"



Enter Dirichlet

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?  
  - a probability distribution over probability distributions (!)



Enter Dirichlet

• In the marbles example, what is θ? What's its type?  
         - a probability distribution (over colours) 

• What's P(θ)?  
  - a probability distribution over probability distributions (!)

This is the 
normalising constant 

∫θ′�
Dir(θ′�|α)dθ′�



P(✓|y ,↵) / P(y |✓)P(✓|↵)

= Cat(y |✓)Dir(✓|↵)

=

KY

k=1

✓Nk
k

KY

k=1

✓↵k�1
k

�
�PK

k=1 ↵k
�

QK
i=k �(↵k)

/
KY

k=1

✓Nk
k ✓↵k�1

k

=

KY

k=1

✓Nk+↵k�1
k

where Nk is the number of items of category k in y .

Posterior is also a Dirichlet: P(✓|y ,↵) = Dir(↵0
),

where ↵0
= ↵+ y ; i.e. ↵0

k = ↵k + yk .

Posterior distribution of Dirichlet-Categorical



P(✓|y ,↵) / P(y |✓)P(✓|↵)

= Cat(y |✓)Dir(✓|↵)

=

KY

k=1

✓Nk
k

KY

k=1

✓↵k�1
k

�
�PK

k=1 ↵k
�

QK
i=k �(↵k)

/
KY

k=1

✓Nk
k ✓↵k�1

k

=

KY

k=1

✓Nk+↵k�1
k

where Nk is the number of items of category k in y .

Posterior is also a Dirichlet: P(✓|y ,↵) = Dir(↵0
),

where ↵0
= ↵+ y ; i.e. ↵0

k = ↵k + yk .

Posterior distribution of Dirichlet-Categorical

           α′�k = αk + Nk



Posterior is also a Dirichlet: P(✓|y ,↵) = Dir(↵0
),

where ↵0
= ↵+ y ; i.e. ↵0

k = ↵k + yk .

This is called conjugacy: Prior and posterior are same type of

distribution, given a certain type of likelihood.

(Dirichlet is the conjugate prior for the categorical and the

multinomial.)

Posterior Dirichlet is parameterised by counts in data y plus

“pseudocounts” ↵.

Large values of ↵ (or ↵�) can thus overwhelm the data; these are

“stronger” priors.

Posterior distribution of Dirichlet-Categorical

           α′�k = αk + Nk



We need a prior!

A Dirichlet distribution consists of two elements:

α = concentration parameter
β = base distribution

distribution of features 
amongst the entire 

dataset

tendency for features 
to be uniform in any 

one category

Prior distribution 
over categories

Strength of the base distribution: 
how close to "  will "  draws be?β θ



We need a prior!

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3

Level 2: Bags in 
general

α,β

If you make make prior choices about what α and β should be, you 
end up with a standard category-learning model (similar to the ones 
we have already discussed, with multinomials instead of Gaussians)



We need a prior!

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3

Level 2: Bags in 
general

α,β

θ4

???

However, such a model cannot learn based on this data that 
categories tend to be uniform (or not).  As a result, it cannot generalise 

correctly given new data (unless that is built into the prior).



We need a prior!

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3

Level 2: Bags in 
general

α,β = uniform

θ4

However, such a model cannot learn based on this data that 
categories tend to be uniform (or not).  As a result, it cannot generalise 

correctly given new data (unless that is built into the prior).



We need a prior!

Data

Level 1: Bag 
proportions

θ1 = [0.98 0.01 0.01] θ2 = [0.01 0.98 0.01] θ3 = [0.01 0.01 0.98]

θ1 θ2 θ3

Level 2: Bags in 
general

α,β = variable

θ4

However, such a model cannot learn based on this data that 
categories tend to be uniform (or not).  As a result, it cannot generalise 

correctly given new data (unless that is built into the prior).



We need a prior!

Data

Level 1: Bag 
proportions

θ1 θ2 θ3

Level 2: Bags in 
general

α,β

θ4

What we want is to learn this knowledge by putting a prior on our prior

Level 3: Prior about 
bags in general λ,µ



The full model

This is called a 
hierarchical 

Bayesian model, 
and in principle you 

can keep adding 
additional levels 

however much you 
want

The Dirichlet is conjugate to 
the Dirichlet

α is a scalar

The parameters 
on the higher 

levels are called 
hyperparameters

 Charles Kemp, Amy Perfors and Joshua B. Tenenbaum (2007). Learning overhypotheses with 
hierarchical Bayesian models DOI: 10.1111/j.1467-7687.2007.00585.x



This model can learn which features “matter”

Data

Level 1: Bag 
proportions

θ1 θ2 θ3

Level 2: Bags in 
general

θ4

Level 3: Prior about 
bags in general

λ,µ

α = 0.1 (within-bag variability)

β (overall population distribution)



This model can learn which features “matter”

Data

Level 1: Bag 
proportions

θ1 θ2 θ3

Level 2: Bags in 
general

θ4

Level 3: Prior about 
bags in general

λ,µ

α = 5 (within-bag variability)

β (overall population distribution)



This model can learn which features “matter”

...but it still can’t learn multiple different overhypotheses for 
multiple different kinds

shape colour/texture

This model cannot do so; it can only learn one overhypothesis 
at a time.  What we want is to be able to cluster items in 
different kinds, but have a prior that favours fewer kinds.



Learning multiple kinds

θ1 θ2 θ3

λ,µ

  α1 = 0.1 
β1 = 

θ1 θ2 θ3

  α2 = 5 
β2 = 



Extendible to having multiple features

  = 5 
= 

  = 5 
= 

  = 0.1 
= 

  = 0.1 
= 

λ,µ



Hierarchical Bayesian Models, more generally

Ability to capture inferences at multiple levels is really 
powerful, also outside cognitive modelling:


• Domain adaptation


• Hierarchical Bayesian Language Model (Teh, 2006): 
n-gram order (trigrams vs bigram) corresponds to 
level in hierarchy


• Or multilevel/hierarchical modelling of  
group vs. individuals, Chapters 5 and 9 in F&L



Experiments



Captures the acquisition of the shape bias

Probability that object belongs to 
the same category as  

Testing

Training

Classifies by shape based on four training categories

Based on Smith (2002)



Captures the acquisition of the shape bias

Can also learn multiple different kinds

Based on Jones & Smith (2002)

Probability that object belongs to 
the same category as the testTraining

Testing

Solids Nonsolids

Solids Nonsolids



In other cases, in more complicated experiments 
(larger feature set, unnatural features, larger memory load)  

humans fail to learn, while the model does well.



Test: Can people learn arbitrary overhypotheses?

Supervised
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Unsupervised

(also did a harder condition with much more challenging stimuli)



Model performance

‣ Model captures the difference between supervised and 
unsupervised, but not human failure in the “hard” condition

Humans Model



In more complicated experiments 
(larger feature set, unnatural features, larger memory load)  
humans fail to learn, while the model does well.


• Cognitive modelling has to take these mismatches 
seriously, otherwise we're just doing engineering.


• Bayesian "ideal observer" models can demonstrate 
learnability in theory, on Marr's computational level;


• But have trouble integrating process-level constraints 
when humans are less than or different from ideal.


• Failure of model to match human behaviour is still 
informative!



Summary

‣  People are capable of more complicated inferences 
than the models we have seen -- learning abstract 
knowledge about hypotheses (overhypotheses)

dax



Summary

‣  People are capable of more complicated inferences 
than the models we have seen -- learning abstract 
knowledge about hypotheses (overhypotheses)

‣We can capture the acquisition of overhypotheses with 
hierarchical Bayesian models



Next time

Perfors, Tenenbaum and Regier (2011). The Learnability 
of Abstract Syntactic Structures. Cognition


• Q: How can infants use (linear) word sequences to 
discover that language has a hierarchical structure?


• A: Use overhypotheses!


