Computational Cognitive Science

Lecture 13: Word Learning

Stella Frank stella.frank@ed.ac.uk 29 October 2019

Word Learning: Frank et al. (2009)

Word learning could use two types of evidence:

Statistical information about word-object co-occurrences **Pragmatic intention:** what is the speaker trying to tell me?

Word learning could use two types of evidence:

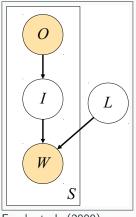
Statistical information about word-object co-occurrences **Pragmatic intention:** what is the speaker trying to tell me?

What is developmentally *plausible* about each type of evidence? What is developmentally *implausible* about each type of evidence? Word learning could use two types of evidence:

Statistical information about word-object co-occurrences **Pragmatic intention:** what is the speaker trying to tell me?

What is developmentally *plausible* about each type of evidence? What is developmentally *implausible* about each type of evidence? Goal of Frank et al. (2009) model: combine both types of evidence into one Bayesian model

M. Frank et al. (2009): Using Speakers Referential Intentions to Model Early Cross-Situational Word Learning

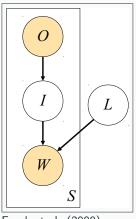


Frank et al. (2009)

Graphical model notation:

- empty/white-background circle: hidden/latent random variable
- shaded/colored circle: observed random variable
- arrow: conditional dependence
- plate: replicated S times.

M. Frank et al. (2009): Using Speakers Referential Intentions to Model Early Cross-Situational Word Learning

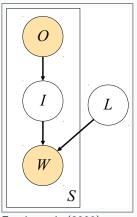


Frank et al. (2009)

For each situation (utterance) $s \in S$:

- Objects O are present and observable.
- The speaker chooses a set of intended referents *I* ⊆ *O*, not visible to the learner (a hidden/latent variable).
- The speaker chooses a set of words $W \in L \cup C$
 - Some of these words are used referentially, to refer to referents in *I*, using words from the lexicon *L*
 - Others are not: these can be words in *L* or other words from the corpus *C*

M. Frank et al. (2009): Using Speakers Referential Intentions to Model Early Cross-Situational Word Learning



Frank et al. (2009)

For each situation (utterance) $s \in S$:

- Objects O are present and observable.
- The speaker chooses a set of intended referents *I* ⊆ *O*, not visible to the learner (a hidden/latent variable).
- The speaker chooses a set of words $W \in L \cup C$
 - Some of these words are used referentially, to refer to referents in *I*, using words from the lexicon *L*
 - Others are not: these can be words in *L* or other words from the corpus *C*

Goal is to infer values (or distributions over values) for the latent variables, here L and I.

Why model intentions?

Children rely on *social context* to learn words. They infer other peoples' intentions based on:

- eye gaze;
- body position;
- pragmatics/saliency.

Evidence for this comes from:

- tracking of others' gaze at six months;
- learning new words using gaze at 18 months.

Note that Frank et al. (2009) model doesn't use these extra-linguistic cues. Two models that do are:

Yu & Ballard (2007) A unified model of early word learning: Integrating statistical and social cues. Neurocomputing

Frank et al. (2008) A Bayesian Framework for Cross-Situational Word-Learning, NIPS

Bayesian Model (Frank et al., 2009)

Posterior:

 $P(L|D) \propto P(D|L)P(L)$

Prior:

 $P(L) \propto e^{-lpha |L|}$

Likelihood:

$$P(D|L) = \prod_{s \in D} P(O_s, W_s|L)$$

=
$$\prod_{s \in D} \sum_{I_s \subseteq O_s} P(O_s, I_s, W_s|L)$$

=
$$\prod_{s \in D} \sum_{I_s \subseteq O_s} P(O_s) P(I_s|O_s) P(W_s|I_s, L)$$

$$\propto \prod_{s \in D} \sum_{I_s \subseteq O_s} P(I_s|O_s) P(W_s|I_s, L)$$

Likelihood: $P(D|L) \propto \prod_{s \in D} \sum_{I_s \subseteq O_s} P(I_s|O_s)P(W_s|I_s, L)$ Generate intentions from objects: uniform distribution: $P(I_s|O_s) \propto 1$

Generate words from intentions and lexicon $P(W_s|I_s, L)$, where words are independent from each other. For each word w in W_s :

- choose referential $(p = \gamma)$ or non-referential $(p = 1 \gamma)$: $P(W_s|I_s, L) = \prod_{w \in W_s} \left[\gamma \sum_{o \in I_s} \frac{1}{|I_s|} P_R(w|o, L) + (1 - \gamma) P_{NR}(w|L) \right]$
- *P_R(w|o,L)*: choose uniformly from lexical items that refer to correct object;
- P_{NR}(w|L): choose quasi-uniformly from all words in corpus: probability 1 if word is not in lexicon, κ if word is in lexicon.

Search for best (MAP, *maximum a posteriori*) solution. Solution: Lexicon only, marginalising over intentions Possible difficulties: Search for best (MAP, *maximum a posteriori*) solution. Solution: Lexicon only, marginalising over intentions Possible difficulties:

- Search space is very large
- Posterior is also very un-smooth, making it:
- Easy to get stuck in local maxima
- Hard to find the right direction to get out

See the Supplementary Materials/Technical Appendix for their strategy.

Data

http://childes.talkbank.org/browser/index.php?url=Eng-NA/Rollins/me03.c

Child is ~ 9 months old.

Rollins, P. R., (2003) Caregivers' contingent comments to 9-month-old infants: Relationships with later language. Applied Psycholinguistics 24, 221–234

Frank et al. and Yu & Ballard use same two files, me03 and di06. (Frank et al. has a typo: me06 and di03)

Two ten-minute videos annotated as \sim 600 utterances; \sim 400 word types; \sim 20 objects types.

- Transcript: You want to do the rattle
- Objects: Face Mother Rattle Chair
- Intentions: Rattle

Two ten-minute videos annotated as \sim 600 utterances; \sim 400 word types; \sim 20 objects types.

- Transcript: You want to do the rattle
- Objects: Face Mother Rattle Chair
- Intentions: Rattle

In Matlab: corpus.mat: everything is an array of ints

- Words: [6,205,391,66,293,50,84]
- Objects: [4,3,19,10]

Results

Evaluation

Evaluate model predictions against:

- gold-standard lexicon (word-object pairings);
- gold-standard intentions for each utterance (coded manually).

Compute *precision* (proportion of pairings that were correct) and *recall* (proportion of total correct pairings that were found).

F-score is the harmonic mean of precision and recall.

Compare against related models:

- simple statistics (co-occurrence frequency, conditional probability, mutual information);
- cross-situational model without intentions: IBM Machine Translation Model 1.

Model	Precision	Recall	F score
Association frequency	.06	.26	.10
Conditional probability (objectlword)	.07	.21	.10
Conditional probability (wordlobject)	.07	.32	.11
Mutual information	.06	.47	.11
Translation model (objectlword)	.07	.32	.12
Translation model (wordlobject)	.15	.38	.22
Intentional model	.67	.47	.55
Intentional model (one parameter)	.57	.38	.46

Results: Lexicon Accuracy

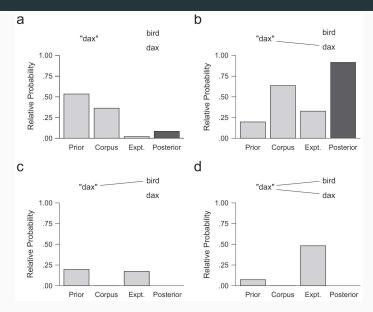
Word	Object		
bear	bear		
bigbird	bird		
bird	duck		
birdie	duck		
book	book		
bottle	bear		
bunnies	bunny		
bunnyrabbit	bunny		
hand	hand		
hat	hat		
hiphop	mirror		
kittyeat	kitty		
lamb	lamb		
laugh	cow		
meow	baby		
mhmm	hand		
mirror	mirror		
moocow	cow		
oink	pig		
on	ring		
pig	pig		
put	ring		
ring	ring		
sheep	sheep		

Model	Precision	Recall	F score
Association frequency	.27	.81	.40
Conditional probability (object/word)	.59	.36	.45
Conditional probability (wordlobject)	.32	.79	.46
Mutual information	.36	.37	.37
Translation model (objectlword)	.57	.41	.48
Translation model (wordlobject)	.40	.57	.47
Intentional model	.83	.45	.58
Intentional model (one parameter)	.77	.36	.50

Children as young as 16 months map novel words to novel objects:

- some researchers have postulated a principle of mutual exclusivity to account for this;
- but it could also be general pragmatic principles at work;
- is mutual exclusivity learned or innate?

Results: Mutual Exclusivity



The model is able to capture mutual exclusivity:

- mapping "dax" to BIRD is unlikely:
 - highly coincidental that no other BIRDs are "dax";
 - corpus likelihood is low
- prior favours not mapping "dax" to anything, but this lowers the probability of the data (corpus and experiment).
- Many of the other models also predict mutual exclusivity, suggesting no special principle is needed.

This example also shows that the model captures one-trial learning.

Discussion

Strengths:

- model combines cross-situational and social/intentional learning ("joint learning")
- more accurate learning of lexicon and referents than previous models;
- explains experimental phenomena without special principles.

Weaknesses:

Discussion

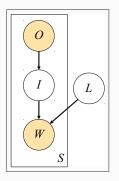
Strengths:

- model combines cross-situational and social/intentional learning ("joint learning")
- more accurate learning of lexicon and referents than previous models;
- explains experimental phenomena without special principles.

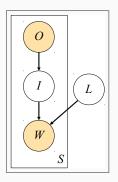
Weaknesses:

- only tested on very small corpus;
- only deals with concrete nouns;
- no model of syntax.
- intention learning is not grounded to observed social cues.

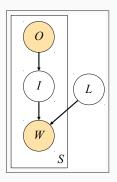
Intentions and Social Cues



What is 'Intention' latent variable really doing?

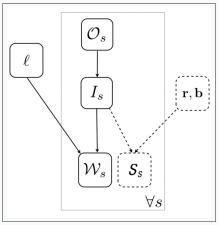


Arguably: Mostly making non-referential word use ("NULL alignment") more likely.



How could we add actual social cues to the model? e.g. child's, parent's eye gaze, hands

Frank et al. (2008) A Bayesian Framework for Cross-Situational Word-Learning



Frank et al. (2008)

Hyperparameters: r is 'relevance'; b is 'base rate'.

Social cues are also generated from intentions: P(S|I, r, b)

New likelihood:

 $P(W, S|L) \propto \prod_{s \in D} \sum_{I_s \subseteq O_s} P(I_s|O_s) P(W_s|I_s, L) P(S_s|I)$

- Infants learn words using multiple cues and strategies:
 - Statistical learning, by tracking word and objects over time using cross-situational learning
 - Social cues, such as gaze and pointing, to disambiguate within a single context
- Frank et al. model includes these joint strategies
- Infers better lexicon than pure alignment/co-occurrence model
- Captures mutual exclusivity behaviour

- Infants learn words using multiple cues and strategies:
 - Statistical learning, by tracking word and objects over time using cross-situational learning
 - Social cues, such as gaze and pointing, to disambiguate within a single context
- Frank et al. model includes these joint strategies
- Infers better lexicon than pure alignment/co-occurrence model
- Captures mutual exclusivity behaviour

Questions?

Next time

- For Thursday: read Perfors' 2011 tutorial.
 - Minimally: Focus on Sections 1+2 (skip 2.1) and Section 3
 - Read sections 4 to end later (or now!)
- Thursday: Hierarchical Bayesian Models
- Paper: Kemp, Perfors and Tenenbaum (2007). Learning overhypotheses with hierarchical Bayesian models
- How to *infer* more informed priors, in order to build models that can capture more complexity
- e.g. to learn that some objects are more likely to be intended than others (instead of having a flat prior)
- or to learn good (distributions over) hyperparameter values (e.g. distribution over α for lexicon prior)