Background

Word Learning
Psychological Findings

Modeling Word Learning
Bayesian Formulation
Generative Model
Evaluation

Results
Lexicon and Referent Accuracy
Mutual Exclusivity
Object Individuation

Reading: Frank, Goodman, and Tenenbaum (2009).
Word Learning

In the last lecture, we discussed how words are processed (word recognition). But these models can’t explain how words are learned, i.e., *lexicon acquisition*:

- between birth and adulthood, children learn about 60,000 words (8–10 words per day on average);
- during the second postnatal year, word learning accelerates dramatically: *vocabulary explosion*;
- often children learn a new word based on a single example of its use: *one-trial learning*.

How is this possible?
Word Learning

Growth curve from the MacArthur-Bates Communicative Development Inventory (MCDI):

[Graph showing the growth curve from the MacArthur-Bates Communicative Development Inventory (MCDI)]

http://www2.psychology.uiowa.edu/faculty/mcmurray/recent/science/
Referential Ambiguity

Philosophers have argued that this should be impossible (Quine, 1960):

▶ referential ambiguity is a serious problem, but:
▶ concrete nouns are learned first, then verbs, adjectives, abstract nouns follow;
▶ coincides with the development of syntax (two-word stage);
▶ one-trial learning happens when a new word is encountered in a context in which the other objects are familiar.
Social Learning

Crucially, children rely on *social context* to learn words. They infer other peoples’ intentions based on:

- eye gaze;
- body position;
- pragmatics/saliency.

Evidence for this comes from:

- apparent lack of learning from video;
- tracking of others’ gaze at six months;
- learning new words using gaze at 18 months.

Image: http://www-cogsci.ucsd.edu/∼deak/cdlab/research.html
Cross-situational Learning

Cross-situational learning resolves referential ambiguity over time:

...car...book...

...ball...cat...car...

...book...car...bottle...

...car...bottle...cat...
Cross-situational Learning

Evidence: both adults and infants can learn word meanings from cross-situational experience in the lab (Yu & Smith, 2007):

$n \times n$ condition: trial presented n words and n possible referents.
Frank et al., 2009 propose a Bayesian model of word learning:

- combines cross-situational learning and inferring speaker’s intention;
- learns a lexicon L from a video corpus C annotated with objects present and words spoken.

Goal: infer a lexicon given a corpus:

$$P(L|C) \propto P(C|L)P(L)$$

Here, L is a set of word-object pairs. $P(C|L)$ is defined using generative model, and $P(L)$ favors smaller L:

$$P(L) \propto e^{-\alpha|L|}$$
Generative Model

The corpus consists of independent situations. For each situation $s \in C$:

- O is the set of objects present in the situation;
- chose $I \subseteq O$, the set of intended referents (objects the speakers wants to talk about);
- chose $W \subseteq L$, the words the speaker utters (the lexicon L includes referential and non-referential words).

In practice, situation = utterance.

Graphical model notation:

- empty/white-background circle: hidden random variable
- shaded/colored circle: observed random variable
- arrow: conditional dependence
- plate: replicated S times.
Generative Model

\[P(C|L) = \prod_{s \in C} P(O_s, W_s|L) \]

\[= \prod_{s \in C} \sum_{I_s \subseteq O_s} P(O_s, I_s, W_s|L) \]

\[= \prod_{s \in C} \sum_{I_s \subseteq O_s} P(O_s)P(I_s|O_s)P(W_s|I_s, L) \]

\[\propto \prod_{s \in C} \sum_{I_s \subseteq O_s} P(I_s|O_s)P(W_s|I_s, L) \]
Generative Model

Generate intentions from objects: uniform distribution:

\[P(I_s|O_s) \propto 1 \]

Generate words from intentions and lexicon: words are independent. For each word \(w \) in \(W_s \):

- choose referential \((p = \gamma) \) or non-referential \((p = 1 - \gamma) \):

\[
P(W_s|I_s, L) = \prod_{w \in W_s} \left[\gamma \sum_{o \in I_s} \frac{1}{|I_s|} P_R(w|o, L) + (1 - \gamma) P_{NR}(w|L) \right]
\]

- \(P_R(w|o, L) \): choose uniformly from lexical items that refer to correct object;
- \(P_{NR}(w|L) \): choose uniformly from all words in corpus.
Data

Small hand-annotated corpus:

- two 10-minute videos of mothers playing with preverbal infants using a small number of toys;
- speech is transcribed;
- each line of transcription is annotated with all visible mid-size objects, and true intention (for evaluation only).

<table>
<thead>
<tr>
<th>words</th>
<th>“do bunnies go jumping through the forest?”</th>
</tr>
</thead>
<tbody>
<tr>
<td>objects</td>
<td>BOOK, BIRD, RATTLE, MIRROR, BUNNY</td>
</tr>
<tr>
<td>intention</td>
<td>BUNNY</td>
</tr>
</tbody>
</table>

Evaluation

Evaluate model predictions against:

▶ gold-standard lexicon (word-object pairings);
▶ gold-standard intentions for each utterance (coded manually).

Compute **precision** (proportion of pairings that were correct) and **recall** (proportion of total correct pairings that were found).

Compare against related models:

▶ simple statistics (co-occurrence frequency, conditional probability, mutual information);
▶ cross-situational model without intentions: IBM Machine Translation Model 1 (associative model).
Machine Translation Model

Given objects $O = o_1 \ldots o_J$ in current situation:

- choose number of words K;
- choose an alignment $a_1 \ldots a_K$ between objects and words (including special NULL object);
- for each k, choose w_k given object that is aligned to it.

Model is asymmetric; try both $O \mid W$ and $W \mid O$.
Results: Lexicon Accuracy

(Frank et al., 2009)

<table>
<thead>
<tr>
<th>Model</th>
<th>Precision</th>
<th>Recall</th>
<th>F score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association frequency</td>
<td>.06</td>
<td>.26</td>
<td>.10</td>
</tr>
<tr>
<td>Conditional probability (object</td>
<td>word)</td>
<td>.07</td>
<td>.21</td>
</tr>
<tr>
<td>Conditional probability (word</td>
<td>object)</td>
<td>.07</td>
<td>.32</td>
</tr>
<tr>
<td>Mutual information</td>
<td>.06</td>
<td>.47</td>
<td>.11</td>
</tr>
<tr>
<td>Translation model (object</td>
<td>word)</td>
<td>.07</td>
<td>.32</td>
</tr>
<tr>
<td>Translation model (word</td>
<td>object)</td>
<td>.15</td>
<td>.38</td>
</tr>
<tr>
<td>Intentional model</td>
<td>.67</td>
<td>.47</td>
<td>.55</td>
</tr>
<tr>
<td>Intentional model (one parameter)</td>
<td>.57</td>
<td>.38</td>
<td>.46</td>
</tr>
</tbody>
</table>
Results: Lexicon Accuracy

<table>
<thead>
<tr>
<th>Word</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td>bear</td>
</tr>
<tr>
<td>bigbird</td>
<td>bird</td>
</tr>
<tr>
<td>bird</td>
<td>duck</td>
</tr>
<tr>
<td>birdie</td>
<td>duck</td>
</tr>
<tr>
<td>book</td>
<td>book</td>
</tr>
<tr>
<td>bottle</td>
<td>bear</td>
</tr>
<tr>
<td>bunnies</td>
<td>bunny</td>
</tr>
<tr>
<td>bunnyrabbit</td>
<td>bunny</td>
</tr>
<tr>
<td>hand</td>
<td>hand</td>
</tr>
<tr>
<td>hat</td>
<td>hat</td>
</tr>
<tr>
<td>hiphop</td>
<td>mirror</td>
</tr>
<tr>
<td>kittycat</td>
<td>kitty</td>
</tr>
<tr>
<td>lamb</td>
<td>lamb</td>
</tr>
<tr>
<td>laugh</td>
<td>cow</td>
</tr>
<tr>
<td>meow</td>
<td>baby</td>
</tr>
<tr>
<td>mhmm</td>
<td>hand</td>
</tr>
<tr>
<td>mirror</td>
<td>mirror</td>
</tr>
<tr>
<td>mooocow</td>
<td>cow</td>
</tr>
<tr>
<td>oink</td>
<td>pig</td>
</tr>
<tr>
<td>on</td>
<td>ring</td>
</tr>
<tr>
<td>pig</td>
<td>pig</td>
</tr>
<tr>
<td>put</td>
<td>ring</td>
</tr>
<tr>
<td>ring</td>
<td>ring</td>
</tr>
<tr>
<td>sheep</td>
<td>sheep</td>
</tr>
</tbody>
</table>

(Frank et al., 2009)
Results: Referent Accuracy

<table>
<thead>
<tr>
<th>Model</th>
<th>Precision</th>
<th>Recall</th>
<th>F score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association frequency</td>
<td>.27</td>
<td>.81</td>
<td>.40</td>
</tr>
<tr>
<td>Conditional probability (object</td>
<td>word)</td>
<td>.59</td>
<td>.36</td>
</tr>
<tr>
<td>Conditional probability (word</td>
<td>object)</td>
<td>.32</td>
<td>.79</td>
</tr>
<tr>
<td>Mutual information</td>
<td>.36</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td>Translation model (object</td>
<td>word)</td>
<td>.57</td>
<td>.41</td>
</tr>
<tr>
<td>Translation model (word</td>
<td>object)</td>
<td>.40</td>
<td>.57</td>
</tr>
<tr>
<td>Intentional model</td>
<td>.83</td>
<td>.45</td>
<td>.58</td>
</tr>
<tr>
<td>Intentional model (one parameter)</td>
<td>.77</td>
<td>.36</td>
<td>.50</td>
</tr>
</tbody>
</table>

(Frank et al., 2009)
Results: Mutual Exclusivity

Children as young as 16 months map novel words to novel objects:

▶ some researchers have postulated a principle of mutual exclusivity to account for this;
▶ but it could also be general pragmatic principles at work;
▶ is mutual exclusivity learned or innate?

“Where is the dax?”
Results: Mutual Exclusivity

(Frank et al., 2009)
Results: Mutual Exclusivity

The model is able to capture mutual exclusivity:

- mapping “dax” to BIRD is unlikely:
 - highly coincidental that no other BIRDs are “dax”;
 - likelihood is low;
- prior favors not mapping “dax” to anything, but this lowers the probability of the corpus;
- many of the other models also predict mutual exclusivity, suggesting no special principle is needed.

This example also shows that the model captures one-trial learning.
Results: Object Individuation

Infants as young as 12 months can use words to individuate objects. Experiment Xu, 2002:

1. an object emerges behind a screen, they hear a word, the object disappears again;
2. a different object emerges and disappears, they either hear the same word or a different word;
3. the screen disappears revealing either one or two objects.

Children show longer looking times when the number of objects in step 3 mismatches the number of words in steps 1 and 2.
Results: Object Individuation

1. "Look, a toy!"
2. "Look, a toy!"
3. vs.

3. vs.

3. vs.
Results: Object Individuation

1. "Look, a duck!"

2. "Look, a ball!"

3. vs.
Results: Object Individuation

This can be captured by the model in terms of surprisal (more on surprisal later):

Xu (2002), Experiment 1

Looking Time (s)

Two Words
One Word

Intentional-Model Predictions

Surprisal

One Object
Two Objects

Xu (2002), Experiment 1
Intentional-Model Predictions
Discussion

Strengths:

▶ model combines cross-situational and social/intentional learning;
▶ more accurate learning of lexicon and referents than previous models;
▶ explains various experimental phenomena without special principles.

Weaknesses:

▶ only tested on very small corpus;
▶ only deals with concrete nouns;
▶ no model of syntax.
Summary

- Infants learn words based on multiple cues (eye gaze, body position, pragmatics/salience);
- encountering a word in multiple situations is crucial for word learning;
- Frank et al.’s model combines visual information (objects) and gaze (intended referents) to infer a mapping from words to meanings;
- it aggregates information across situations;
- it outperforms a simple translation (alignment) model and captures mutual exclusivity and object individuation.
References

