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Bayesian Inference

Last time, we saw two approaches to drawing inferences from data.
MLE and MAP: choose the best hypothesis:

I can work well if one hypothesis is strongly favored (usually
when we have lots of data);

I but not mathematically optimal, and works poorly when many
hypotheses are plausible (usually when there’s little data).

Bayesian estimation: average over hypotheses:

I makes mathematically optimal inferences;

I more complex (more computation); we don’t know how
humans are performing these computations.

Today: human behavior can be modeled as Bayesian inference in
the domain of concept learning.
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Concepts vs. Categories

Tenenbaum (2000) addresses the question of how people quickly
learn new concepts:

I concepts could be categories (dog, chair) or more vague
(“healthy level” for a specific hormone, “ripe” for a pear);

I here, we will focus on number concepts (“odd number”,
“between 30 and 45”).

Generalization is a key feature of concept learning: given a small
number of positive examples, determine which other examples are
also members of the concept.
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Generalization

Given some examples of a concept, determine which other things
belong to that concept. Two basic strategies:

I rule-based generalization: find a rule that describes the
examples and apply it: deterministic predictions;

I similarity-based generalization: identify features of the
examples and the new item, and decide based on how many
features are shared: probabilistic predictions.

People use both strategies, but in different circumstances. (See
categorization: decision-boundary models vs. exemplar models.)
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Generalization

Tenenbaum (2000) presents a Bayesian model of concept learning:

I the model can exhibit both rule-based and similarity-based
behavior;

I but it is not a hybrid model: it uses only one mechanism, rules
and similarity are special cases;

I explains how people can generalize from very few examples;

I Bayesian hypothesis averaging is a key feature of the model.

The model is trained on data from number concept learning.
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The Number Game

I think of a “number concept” (a subset of numbers 1–100).

I odd numbers;

I powers of two;

I numbers between 23 and 34.

I choose some examples of this concept at random and show them
to you:

I {3, 57};
I {16, 2, 8};
I {25, 31, 24}.

You guess what other numbers are also included in the concept.
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Experimental Design

Subjects are told how the game works.

Then, a few examples of the concept are presented:

I class I trials: only one example;

I class II trials: four examples, consistent with a simple
mathematical rule;

I class III trials: four examples, similar in magnitude.

Subjects then rate the probability that other numbers (randomly
chosen from 1–100) are also part of the concept.
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Class I Trials

Only one example is given (16 or 60). Results:

mber concept task. 
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I responses fairly uniform, but slightly higher ratings for similar
magnitude, similar mathematically;

I even numbers (both), powers of two (16), multiples of
ten (60).

Notes: stars show examples given; missing bars are not zero, just
were not queried.

9 / 23



Class II Trials

Four examples were given, consistent with a simple mathematical
rule ({16, 8, 2, 64} or {60, 80, 10, 30}). Results:
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Class II

Class III
I responses reflect most specific rule consistent with examples,

other numbers have a probability near zero;

I these rules are not the only logical possibility: {16, 8, 2, 64}
could be “even numbers”, for example.
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Class III Trials

Four examples were given that didn’t follow a simple rule, but were
similar in magnitude ({16, 23, 19, 20} or {60, 52, 57, 55}).
Results:
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Class III

I responses reflect similarity gradient by magnitude;

I low probability for number more than a fixed distance away
from the largest or smallest example.
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Bayesian Model

Given data X = {x (1), . . . , x (n)} sampled from concept C , we want
to determine P(y ∈ C |X ) for new data point y .

As in many inference problems, a hidden variable (C ) determines
the inference, but we don’t know C , so we will average over it:

P(y ∈ C |X ) =
∑
h∈H

P(y ∈ C |C = h)P(C = h|X )

To compute the posterior P(C = h|X ), we need to decide:

I What is the hypothesis space H?

I What is the prior distribution over hypotheses?

I What is the likelihood function?
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Hypothesis Space

In theory, all possible subsets of numbers 1–100.

The full space too large; we consider only salient subsets:

I subsets defined by mathematical properties: odds, evens,
primes, squares, cubes, multiples and powers of small
numbers, numbers with same final digit;

I subsets defined by similar magnitude: intervals of consecutive
numbers.

Total: 5083 hypotheses.
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Prior P(C = h)

First, assign a probability to each type of hypothesis:

I P(C is defined mathematically) = λ;

I P(C is defined as an interval) = 1− λ.

Use λ = 1
2 .

Then assign probabilities within these types:

I all mathematical hypotheses are equally probable;

I medium-sized intervals are more probable than small or large
intervals (Erlang distribution).
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Likelihood P(X |C = h)

Assume examples are sampled uniformly at random from C .

For hypothesis h containing |h| numbers, each number in h is
drawn as an example with probability 1/|h|, so:

P(X = x (1) . . . x (n)|h) =

{
1

|h|n if ∀j , x (j) ∈ h

0 otherwise

Ex. For h = “multiples of five”, |h| = 20, P(10, 35|h) = 1/202.

Size principle: for fixed data, smaller hypotheses have higher
likelihood than larger hypotheses. As data increases, smaller hyps
have exponentially higher likelihood than larger hypotheses.
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Inference over Posterior

Draw inferences by averaging over hypotheses:

P(y ∈ C |X ) =
∑
h∈H

P(y ∈ C |C = h)P(C = h|X )

P(y ∈ C |C = h) is either 0 or 1.

The posterior P(C = h|X ) is computed using Bayes’ rule, with
likelihood and prior as defined above:

P(C = h|X ) =
P(X |C = h)P(C = h)

P(X )
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Alternative Models

Similarity model (SIM):

I consider as “features” of each example set the hypotheses
that contain all example numbers;

I P(y ∈ C |X ) computed as number of common features
between y and X (number of hyps containing both X and y).

10, 60, 80, 30 =⇒
Even numbers Btw 10–80
Mults of 5 Btw 9–84
Mults of 10 Btw 1–93

Equivalent to 0/1 likelihood:

P(X = x (1) . . . x (n)|h) =

{
1 if ∀j , x (j) ∈ h
0 otherwise
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Alternative Models

Rule-based model (MIN):

I replaces hypothesis averaging with maximization (i.e. MAP
estimate): always choose the highest probability hypothesis;

I since priors are weak, guided by likelihood: always selects the
smallest (most specific) consistent rule (size principle);

I reasonable when this rule (hypothesis) is much more probable
than all others (Class II);

I not reasonable when many hypotheses have similar
probabilities (Class I and III).
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Results

Humans: Similarity-based model:

dictions for the nu
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Results

Humans: Rule-based model:

dictions for the nu
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Figure 1: Data and model predictions for the nu
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Results

Humans: Bayesian model:

dictions for the nu
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Conclusions

I Previous work suggested two different mechanisms for concept
learning: rules or similarity;

I no explanation for why one of them is used in any given case;

I Bayesian model suggests these are two special cases of a
single system implementing Bayesian inference;

I this results stems from an interaction between:

I hypothesis averaging: yields similarity-like behavior when many
hypotheses have similar probability;

I size principle: yields rule-like behavior when one hypothesis is
much more probable than others;

I though still possible these could be implemented in the brain
with two different mechanisms.
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