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Cognition as Inference

The story of probabilistic cognitive modeling so far:
» models define probabilities that correspond to some aspect of
human behavior;
» example: P(R; = Ali), the probability of assigning category A
to item i in the GCM;

> models have parameters that determine these probability
distributions (e.g., scaling factor c in the CGM);

» maximum likelihood estimation is a way of setting these
parameters: we infer probability distributions from data.

So are probabilities just technical devices? Or do they have a
cognitive status in our model?
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Cognition as probabilistic inference

Many recent models assume that probabilities and estimation are
cognitively real — we estimate and represent something like
probabilities. Why?

> people act as if they have degrees of belief or certainty

» humans must deal constantly with ambiguous and noisy
information

> experimental evidence: People exploit and combine noisy
information in an adaptive, graded way

28



Cognition as probabilistic inference

People act as if they have degrees of belief or certainty. Example:

> Alice has a coin that might be two-headed.

» Alice flips the coin four times, it comes up HHHH.

Consider the following bets:

» Would you take an even bet the coin will come up heads on
the next flip?

» Would you bet 8 pounds against a profit of 1 pound?
» Would you bet your life against a profit of 1 pound?
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Cognition as probabilistic inference

Humans must deal constantly with ambiguous and noisy
information, e.g.,

> Visual ambiguity
» Linguistic ambiguity

» Ambiguous causes 1

“Infant Pulled from Wrecked Car
Involved in Short Police Pursuit”?

LA common light-prior for visual search, shape, and reflectance judgments”
(Adams, 2007)
2| anguage Log — http://languagelog.ldc.upenn.edu/nll f7p=4441
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Cognition as probabilistic inference

People exploit and combine noisy information in an adaptive,
graded way, e.g.,

» Estimating motor forces and visual patterns from noisy data

» Combining visual and motor feedback

» Learning about cause and effect in unreliable systems

» Learning about the traits, beliefs and desires of others from
their actions

» Language learning
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Cognition as probabilistic inference

How do people represent and exploit information about
probabilities?
Intuitively:

» our inferences depend on observations, but also on prior
beljefs;

» as more observations accrue, estimates become more reliable;

» when observations are unreliable, prior beliefs are used instead.

Today we will discuss the mathematics behind these intuitions.

28



Distributions

Let's recap the distinction between discrete and continuous
distributions. Discrete distributions:

» sample space S is finite or countably infinite (e.g., integers);

» distribution is a probability mass function, defines probability
of a random variable taking on a particular value;

» example: P(x|f) = (7)6*(1 — 6)"> (binomia):
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Distributions

We have also seen examples of continuous distributions:

» sample space is uncountably infinite (real numbers);

» distribution is a probability density function, defines the
probabilities if intervals of the random variable;

» example: p(x|0) = %e‘x/e (exponential):

A=05 ——
A=10
13 Ao15 ——

0 1 2 3 4 5

Note: Griffiths and Yuille denote density functions with p(-);
another convention is f(-).
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Discrete vs. Continuous

Discrete distributions:
» P(X=x)>0forall xe$S
> ers P(x)=1
» P(Y)=>,cs P(Y|x)P(x)  Law of Total Probability
» E[X] = > csx-P(x) Expectation
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Discrete vs. Continuous

Discrete distributions:
» P(X=x)>0forall xe$S
> Dwes P(x) =1
» P(Y)=>,cs P(Y|x)P(x)  Law of Total Probability
» E[X] = > csx-P(x) Expectation
Continuous distributions:
» p(x) >0forall xeR
> 25 P(x)dx =1
» p(y) = [ p(y|x)p(x)dx Law of Total Probability
» E[X] =[x p(x)dx Expectation
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Bayes Rule
In its general form, the inference task consists of determining the
probability of a hypothesis given some data. Notation:

> h: the hypothesis we are interested in;
» H or H: the hypothesis space (set of all possible hypotheses);

> y: observed data (note we use y rather than d);

According to Bayes rule:

P(hly) = ")
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Bayes Rule
In its general form, the inference task consists of determining the
probability of a hypothesis given some data. Notation:

> h: the hypothesis we are interested in;
» H or H: the hypothesis space (set of all possible hypotheses);

> y: observed data (note we use y rather than d);

According to Bayes rule:

P(hly) = ")

We can compute the denominator using the law of total probability:

P(y)=>_ P(y|h)P(H)

heH
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Comparing Two Hypotheses

Example: a box contains two coins, one that comes up heads 50%
of the time, and one that comes up heads 90% of the time.

You pick one of the coins, flip it 10 times and observe
HHHHHHHHHH. Which coin was flipped? What if you had
observed HHTHTHTTHT?
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Comparing Two Hypotheses

Example: a box contains two coins, one that comes up heads 50%
of the time, and one that comes up heads 90% of the time.

You pick one of the coins, flip it 10 times and observe
HHHHHHHHHH. Which coin was flipped? What if you had
observed HHTHTHTTHT?

Let € be the probability that the coin comes up heads. So we have
two hypotheses: hg: 6 = 0.5 and hy: 6 = 0.9.

The probability of a sequence y with Ny heads and N7 tails is:
P(y|6) = o™ (1 — )N
A single flip has a Bernoulli distribution (special case of the

binomial dist.).
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Comparing Two Hypotheses

We can compare the probabilities of the two hypotheses directly by
computing the odds:

P(hly) _ P(ylh1) P(h1)
P(holy) — P(ylho) P(ho)
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Comparing Two Hypotheses

We can compare the probabilities of the two hypotheses directly by
computing the odds:

P(hily) — P(y[h1) P(h) jikelihood ratio

P(holy) — P(ylho) P(ho)
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Comparing Two Hypotheses

We can compare the probabilities of the two hypotheses directly by
computing the odds:
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Comparing Two Hypotheses

We can compare the probabilities of the two hypotheses directly by
computing the odds:

P(mly) _ P(ylhi) P(h)

P(holy) — P(ylho) P(ho)

We get posterior odds of 357:1 in favor of h; for HHHHHHHHHH
and 165:1 in favor of hg for HHTHTHTTHT.
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Comparing Infinitely Many Hypotheses

Let's now assume that 6, the probability of the coin coming up
heads, can be anywhere between 0 and 1.

Now we have infinitely many hypotheses, but Bayes rule still

applies:
P(y|0)p(0)

p(0ly) = Ply)

where the probability of the data is:

1
P(y) = /0 P(y16)p(6)d6

This gives us a probability density function for theta 6 given our
data. What do we do with it?
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Maximum Likelihood Estimation

1. Choose the # that makes y most probable, i.e., ignore p(0):

0 = argmax P(y|0)
0

This is the maximum likelihood (ML) estimate of 6.

Problem: The ML estimate often generalizes poorly. It also fails to
take the shape of the posterior distribution into account.
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Maximum a Posteriori Estimation

2. Choose the # that is most probable given y:
0 = arg max p(6y) = arg max P(y|0)p(6)
0 0

This is the maximum a posteriori (MAP) estimate of 6, and is
equivalent to the ML estimate when p(0) is uniform.

Non-uniform priors can reduce overfitting, but the MAP still
doesn’t account for the shape of p(6]y):
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Bayesian Integration

3. Instead of maximizing, take the expected value of 0:

E[] = /ep(a\y d0_/ g YIIP) y\e % 4 o /apy\e)() 0

This is the posterior mean, the average over all hypotheses.
For our coin flip example with uniform p(6), the posterior is:

(Ny + N7 +1)!

POY) = =N oM (1 — )T

This is known as the beta distribution.
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Bayesian Integration

3. Instead of maximizing, take the expected value of 0:

E[] = /ep(a\y d0_/ g YIIP) y\a % 4 o /apy\e)() 0

This is the posterior mean, the average over all hypotheses.
For our coin flip example with uniform p(6), the posterior is:

(Ny + N7 +1)!

p(fly) = NN gNH (1 — O)NT = beta(Ny + 1, N7 + 1)

This is known as the beta distribution.
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Beta Distribution

Do
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Maximum Likelihood Estimate

Using the beta distribution, the ML estimate (equivalent to the
MAP estimate with a uniform prior) works out as:

—
N Ny + Nt
This is a relative frequency estimate: it's simply the frequency of
heads over the total number of coin flips.

This estimate is insensitive to sample size: if we get 10 heads and
0 tails then we are as certain about 6 as if we get 100 heads and 0
tails. This explains the overfitting.
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Posterior Mean

Let's compare this with the posterior mean, which for the beta
distribution works out as:

Ny+1

E[e]: Ny + Nt +2

This is the average over all values of §. It pays attention to sample
size (compare E[f] for 10 heads and 0 tails vs. 100 heads and 0
tails), and is less prone to overfitting.

We can think of this as adding pseudocounts to the relative
frequency estimate. This is called smoothing.

Note that we are still assuming a uniform prior!
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Choosing a Prior

Let's assume we want to use a non-uniform prior. We could again
use the beta distribution:

p(#) = beta(Vy + 1, V7 + 1)

where Vi, VT > —1 encodes our belief about likely values of 6.

This distribution has a mean of (Vg +1)/(Vy + VT +2) and
becomes concentrated around the mean as Vi + V7T increases.

For example, Viy = V7 = 1000 puts a strong prior on § = 0.5.

The parameters that govern the prior distribution are called
hyperparameters. (Here, Viy and V1 are hyperparameters.)



Choosing a Prior

Using the beta(Vy + 1, V' + 1) prior, the posterior distribution
becomes:

(Ny+ Nt + Vy+ V1 + 1)!9NH+VH

(NH + Vi) (N7 + V7)! (1—g)NT+Vr

p(fly) =
which is beta(Ny + Vg + 1, Ny + V1 + 1). The MAP estimate of
this posterior is then:

Ny + Vy

0=
Ny + Nt + Vy+ Vr

and the posterior mean becomes:

Ny+ Vy+1

E[0] =
[] Ng+ Nt +Vy+ Vr+2
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Choosing a Prior

Returning to our example, if we use a beta-prior with
Vy = V+ = 1000, and our data consists of a sequence of 10 heads
and 0 tails, then:

Ny + Vi + 1 1011

E[f] = =
[] Ny + Nt 4+ Vy+ Vy+2 2012

~ 0.5025

So we retain our belief that # = 0.5, even though we've seen
strong evidence to the contrary. This would change had we seen
100 heads rather than 10.

Compare this to the maximum likelihood estimate, which is:

Ny

=—"—=1
Ny + Nt
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Conjugate Priors

The likelihood was Bernoulli distributed, and the prior beta
distributed. This ensured the posterior was also beta distributed.

This is because the beta distribution is a conjugate prior for the
Bernoulli distribution.

Using a conjugate prior can make the computation of the posterior
tractable (e.g., by ensuring that there is an analytic solution).

Likelihood: Bernoulli Conjugate Prior:  beta
binomial beta
multinomial Dirichlet
normal normal
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Bayesian Decision Theory

4. Keep p(f|y) around for when we need to make a decision, or use
Bayesian decision theory to define an estimator.

For example, under a beta(1,1) prior, our expectations for § are the
same having seen (1) no data; or (2) 100 heads and 100 tails. Are
these data equivalent if we're considering a bet that 10 of the next
10 flips will come up heads?

12

—beta(1,1)
— beta(101,101)|
10

theta

o N & o o

7\

0.4 0.6
pltheta)

0 0.2 0.8 1

Challenge: Compute the expected probability of winning the bet
under each of the two data sets.
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Summary

» Cognitive tasks can be modeled as probabilistic inference;

» using Bayes rule, inference can be broken down into posterior,
likelihood, and prior distributions;

» standard techniques such as maximum likelihood estimation or
MAP generate point estimates of the parameters;

» Bayesian techniques instead use averaging (Bayesian
integration) over all parameter values;

> this makes them less prone to overfitting and allows the use of
informative priors;

» the prior distribution is typically chosen to be conjugate with
the likelihood distribution.
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