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Cognition as Inference

The story of probabilistic cognitive modeling so far:

I models define probabilities that correspond to some aspect of
human behavior;

I example: P(Ri = A|i), the probability of assigning category A
to item i in the GCM;

I models have parameters that determine these probability
distributions (e.g., scaling factor c in the CGM);

I maximum likelihood estimation is a way of setting these
parameters: we infer probability distributions from data.

So are probabilities just technical devices? Or do they have a
cognitive status in our model?

3 / 28



Cognition as probabilistic inference

Many recent models assume that probabilities and estimation are
cognitively real – we estimate and represent something like
probabilities. Why?

I people act as if they have degrees of belief or certainty

I humans must deal constantly with ambiguous and noisy
information

I experimental evidence: People exploit and combine noisy
information in an adaptive, graded way
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Cognition as probabilistic inference

People act as if they have degrees of belief or certainty. Example:

I Alice has a coin that might be two-headed.

I Alice flips the coin four times, it comes up HHHH.

Consider the following bets:

I Would you take an even bet the coin will come up heads on
the next flip?

I Would you bet 8 pounds against a profit of 1 pound?

I Would you bet your life against a profit of 1 pound?

5 / 28



Cognition as probabilistic inference

Humans must deal constantly with ambiguous and noisy
information, e.g.,

I Visual ambiguity

I Linguistic ambiguity

I Ambiguous causes 1

“Infant Pulled from Wrecked Car
Involved in Short Police Pursuit”2

1“A common light-prior for visual search, shape, and reflectance judgments”
(Adams, 2007)

2Language Log – http://languagelog.ldc.upenn.edu/nll/?p=4441
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Cognition as probabilistic inference

People exploit and combine noisy information in an adaptive,
graded way, e.g.,

I Estimating motor forces and visual patterns from noisy data

I Combining visual and motor feedback

I Learning about cause and effect in unreliable systems

I Learning about the traits, beliefs and desires of others from
their actions

I Language learning
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Cognition as probabilistic inference

How do people represent and exploit information about
probabilities?
Intuitively:

I our inferences depend on observations, but also on prior
beliefs;

I as more observations accrue, estimates become more reliable;

I when observations are unreliable, prior beliefs are used instead.

Today we will discuss the mathematics behind these intuitions.
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Distributions

Let’s recap the distinction between discrete and continuous
distributions. Discrete distributions:

I sample space S is finite or countably infinite (e.g., integers);

I distribution is a probability mass function, defines probability
of a random variable taking on a particular value;

I example: P(x |θ) =
(n
x

)
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Distributions
We have also seen examples of continuous distributions:

I sample space is uncountably infinite (real numbers);

I distribution is a probability density function, defines the
probabilities if intervals of the random variable;

I example: p(x |θ) = 1
θe
−x/θ (exponential):

Note: Griffiths and Yuille denote density functions with p(·);
another convention is f (·).

10 / 28



Discrete vs. Continuous

Discrete distributions:

I P(X = x) ≥ 0 for all x ∈ S

I
∑

x∈S P(x) = 1

I P(Y ) =
∑

x∈S P(Y |x)P(x) Law of Total Probability

I E[X ] =
∑

x∈S x · P(x) Expectation

Continuous distributions:

I p(x) ≥ 0 for all x ∈ R
I
∫∞
−∞ p(x)dx = 1

I p(y) =
∫
p(y |x)p(x)dx Law of Total Probability

I E[X ] =
∫
x · p(x)dx Expectation
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Bayes Rule

In its general form, the inference task consists of determining the
probability of a hypothesis given some data. Notation:

I h: the hypothesis we are interested in;

I H or H: the hypothesis space (set of all possible hypotheses);

I y : observed data (note we use y rather than d);

According to Bayes rule:

P(h|y) =
P(y |h)P(h)

P(y)

We can compute the denominator using the law of total probability:

P(y) =
∑
h′∈H

P(y |h′)P(h′)
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Comparing Two Hypotheses

Example: a box contains two coins, one that comes up heads 50%
of the time, and one that comes up heads 90% of the time.

You pick one of the coins, flip it 10 times and observe
HHHHHHHHHH. Which coin was flipped? What if you had
observed HHTHTHTTHT?

Let θ be the probability that the coin comes up heads. So we have
two hypotheses: h0: θ = 0.5 and h1: θ = 0.9.

The probability of a sequence y with NH heads and NT tails is:

P(y |θ) = θNH (1− θ)NT

A single flip has a Bernoulli distribution (special case of the
binomial dist.).
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Comparing Two Hypotheses

We can compare the probabilities of the two hypotheses directly by
computing the odds:

P(h1|y)

P(h0|y)
=

P(y |h1)

P(y |h0)

P(h1)

P(h0)

We get posterior odds of 357:1 in favor of h1 for HHHHHHHHHH
and 165:1 in favor of h0 for HHTHTHTTHT.
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Comparing Infinitely Many Hypotheses

Let’s now assume that θ, the probability of the coin coming up
heads, can be anywhere between 0 and 1.

Now we have infinitely many hypotheses, but Bayes rule still
applies:

p(θ|y) =
P(y |θ)p(θ)

P(y)

where the probability of the data is:

P(y) =

∫ 1

0
P(y |θ)p(θ)dθ

This gives us a probability density function for theta θ given our
data. What do we do with it?
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Maximum Likelihood Estimation

1. Choose the θ that makes y most probable, i.e., ignore p(θ):

θ̂ = arg max
θ

P(y |θ)

This is the maximum likelihood (ML) estimate of θ.

Problem: The ML estimate often generalizes poorly. It also fails to
take the shape of the posterior distribution into account.
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Maximum a Posteriori Estimation

2. Choose the θ that is most probable given y :

θ̂ = arg max
θ

p(θ|y) = arg max
θ

P(y |θ)p(θ)

This is the maximum a posteriori (MAP) estimate of θ, and is
equivalent to the ML estimate when p(θ) is uniform.

Non-uniform priors can reduce overfitting, but the MAP still
doesn’t account for the shape of p(θ|y):
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Bayesian Integration

3. Instead of maximizing, take the expected value of θ:

E[θ] =

∫ 1

0
θp(θ|y)dθ =

∫ 1

0
θ
P(y |θ)p(θ)

P(y)
dθ ∝

∫ 1

0
θP(y |θ)p(θ)dθ

This is the posterior mean, the average over all hypotheses.

For our coin flip example with uniform p(θ), the posterior is:

p(θ|y) =
(NH + NT + 1)!

NH !NT !
θNH (1− θ)NT

= beta(NH + 1,NT + 1)

This is known as the beta distribution.
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Beta Distribution
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Maximum Likelihood Estimate

Using the beta distribution, the ML estimate (equivalent to the
MAP estimate with a uniform prior) works out as:

θ̂ =
NH

NH + NT

This is a relative frequency estimate: it’s simply the frequency of
heads over the total number of coin flips.

This estimate is insensitive to sample size: if we get 10 heads and
0 tails then we are as certain about θ as if we get 100 heads and 0
tails. This explains the overfitting.
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Posterior Mean

Let’s compare this with the posterior mean, which for the beta
distribution works out as:

E[θ] =
NH + 1

NH + NT + 2

This is the average over all values of θ. It pays attention to sample
size (compare E[θ] for 10 heads and 0 tails vs. 100 heads and 0
tails), and is less prone to overfitting.

We can think of this as adding pseudocounts to the relative
frequency estimate. This is called smoothing.

Note that we are still assuming a uniform prior!
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Choosing a Prior

Let’s assume we want to use a non-uniform prior. We could again
use the beta distribution:

p(θ) = beta(VH + 1,VT + 1)

where VH ,VT > −1 encodes our belief about likely values of θ.

This distribution has a mean of (VH + 1)/(VH + VT + 2) and
becomes concentrated around the mean as VH + VT increases.

For example, VH = VT = 1000 puts a strong prior on θ = 0.5.

The parameters that govern the prior distribution are called
hyperparameters. (Here, VH and VT are hyperparameters.)
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Choosing a Prior

Using the beta(VH + 1,VT + 1) prior, the posterior distribution
becomes:

p(θ|y) =
(NH + NT + VH + VT + 1)!

(NH + VH)!(NT + VT )!
θNH+VH (1− θ)NT+VT

which is beta(NH + VH + 1,NT + VT + 1). The MAP estimate of
this posterior is then:

θ̂ =
NH + VH

NH + NT + VH + VT

and the posterior mean becomes:

E[θ] =
NH + VH + 1

NH + NT + VH + VT + 2
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Choosing a Prior

Returning to our example, if we use a beta-prior with
VH = VT = 1000, and our data consists of a sequence of 10 heads
and 0 tails, then:

E[θ] =
NH + VH + 1

NH + NT + VH + VT + 2
=

1011

2012
≈ 0.5025

So we retain our belief that θ = 0.5, even though we’ve seen
strong evidence to the contrary. This would change had we seen
100 heads rather than 10.

Compare this to the maximum likelihood estimate, which is:

θ̂ =
NH

NH + NT
= 1
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Conjugate Priors

The likelihood was Bernoulli distributed, and the prior beta
distributed. This ensured the posterior was also beta distributed.

This is because the beta distribution is a conjugate prior for the
Bernoulli distribution.

Using a conjugate prior can make the computation of the posterior
tractable (e.g., by ensuring that there is an analytic solution).

Likelihood: Bernoulli Conjugate Prior: beta
binomial beta
multinomial Dirichlet
normal normal
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Bayesian Decision Theory

4. Keep p(θ|y) around for when we need to make a decision, or use
Bayesian decision theory to define an estimator.

For example, under a beta(1,1) prior, our expectations for θ are the
same having seen (1) no data; or (2) 100 heads and 100 tails. Are
these data equivalent if we’re considering a bet that 10 of the next
10 flips will come up heads?

0 0.2 0.4 0.6 0.8 1
p(theta)

0

2

4

6

8

10

12
th

et
a

beta(1,1)
beta(101,101)

Challenge: Compute the expected probability of winning the bet
under each of the two data sets.

26 / 28



Summary

I Cognitive tasks can be modeled as probabilistic inference;

I using Bayes rule, inference can be broken down into posterior,
likelihood, and prior distributions;

I standard techniques such as maximum likelihood estimation or
MAP generate point estimates of the parameters;

I Bayesian techniques instead use averaging (Bayesian
integration) over all parameter values;

I this makes them less prone to overfitting and allows the use of
informative priors;

I the prior distribution is typically chosen to be conjugate with
the likelihood distribution.
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