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Readings

Chapter 10.6 of F&L
Chapter 11 of F&L

Recommended:

“Bayesian hypothesis testing for psychologists: A tutorial on
the Savage–Dickey method” (2010) by Wagenmakers et al.
(Link)

https://www.sciencedirect.com/science/article/pii/S0010028509000826#fn1


Model comparison

We discussed some methods for comparing models using
likelihoods under MLEs, and predictive acccuracy



Identifiability

If likelihood doesn’t depend strongly on parameters:

Effectively a simpler model
Parameters may not be identifiable

Pros:

Less likely to have unwanted flexibility
Sometime we want parameters not to matter

“Nuisance parameters”
Ideally we integrate them out and forget about them



Identifiability

Cons:

If parameters have important psychological interpretations,
they should be identifiable
Some flexibility is important – a model should be as simple as
possible, but no simpler



Identifiability

1 Sometimes non-identifiability is inherent in a model; function
from parameters to data isn’t invertible

E.g., using mean response times to infer parameters of Weibull
distribution

2 Sometimes identification is impossible in practice, because data
are too sparse or noisy



Identifiability

If identifiability is important, we can perform an identifiability
“sanity check” before collecting data.

1 Math, e.g., Jacobian rank (See F&L 10.6.1)
2 Simulate and recover – how accurate are inferences when

there’s a known truth, and data matched to experiment
Optimistic, by still useful
Can serve purposes similar to a power analysis



Identifiability

The same principles apply to model comparison – it’s good to check
that a given experiment can distinguish between models



Bayesian model comparison

Last time we discussed approaches to model comparison that don’t
involve marginal likelihoods.

Today we’ll talk about using and approximating marginal likelihoods.



Bayesian model comparison

Even if we have marginal likelihoods under several models, we can’t
compute P(M|y):

We would need to sum over all possible models and data
distributions for all of them. Instead:

Given any two modelsM1 andM1, we can compute the ratio
of their posterior probabilities:

P(M1|y)
P(M2|y) = P(y|M1)P(M1)

P(y|M2)P(M2)

(The impossible sums cancel out)



Bayesian model comparison

There is unlikely to be consensus about P(M); in practice people
use Bayes factors:

Posterior ratio given equal prior probability
How strongly you’d have to prefer a model a priori in order to
(still) favor it a posteriori

Lots of opinions about what constitutes a “convincing” Bayes factor



Estimating marginal likelihoods

If we have no closed-form solution for a marginal likelihood, what
can we do?

We have several options, including:
1 Numerical integration
2 Importance sampling
3 Harmonic mean estimation
4 Transdimensional MCMC
5 Savage-Dickey density ratio
6 BIC



Numerical integration

Use a general-purpose algorithm to integrate a function within a
hypercube.

Easy!
Requires bounds on the high-density parts of the space
Falls apart in high-dimensional spaces
Risks missing narrow peaks



Numerical integration: Example

Recall that the normal density function is 1√
2πσ2 e−

(µ−x)2

2σ2 .

library(cubature)
sd=10;mu=.5
unnGauss <- function(x) {exp(-(mu-x)^2/(2*sd^2))}
adaptIntegrate(unnGauss,c(-1E3),c(1E3))

Result:

$integral
[1] 25.06628

> sqrt(2*pi*sd^2)
[1] 25.06628

(Also see F&L listing 11.1)



Importance sampling

Suppose we have:

p(θ|M)
p(y|θ,M)

and we want:

p(y|M) =
∫

θ p(y|θ,M)p(θ|M)dθ
E [θ|y,M]



Importance sampling

We can estimate what we want, using importance sampling :

(omittingM)
1 Draw J samples from a normalized proposal distribution g(θ)
2 Weight each sample: wj = p(y|θ)p(θ)

g(θ)

3 The expectation of θ is approximately
∑

j wj θ
(j)∑

j wj

4 The marginal likelihood is approximately 1
J

∑
j wj

If the variance of the weights is low, these are probably trustworthy
estimates.



Simple Monte Carlo integration

A special case of importance sampling:
1 Sample from the prior (usually easy)
2 Weight by likelihood: wj = p(y|θ)p(θ)

p(θ) = p(y|θ)

Easy and acceptable if you think the samples will cover high-density
areas of the posterior.

Better: Find a (normalized) proposal function that resembles your
posterior



A demonstration

Our problem boils down to estimating the integral of a function.

We can use standard probability densities to see this works, since we
know their integral (over data, not parameters) is 1.

Gaussian:

∫
x

e−
(µ−x)2

2σ2 dx =
√
2πσ2

Let’s integrate over x (analogous to our parameters in model
selection).



Importance sampling

impSamp <- function(targD,ef) {
nSamps = 40000 # The more the better
# Using a student's t distribution, df=1
proposals <- rt(nSamps,1)
pDens <- dt(proposals,1)
unnP <- targD(proposals)
w <- unnP/pDens
print(paste("Expected value of target function:",

sprintf("%2.3f",sum(w*ef(proposals))/sum(w))))
print(paste("Average importance weight:",

sprintf("%2.3f",sum(w)/nSamps)))
}



Gaussian example

sd=.05;mu=5;
unnGauss <- function(x) {exp(-(mu-x)^2/(2*sd^2))}
# Real
print(sprintf("Real: %2.3f",sqrt(2*pi*sd^2)))
# Numerical
adaptIntegrate(unnGauss,c(-1E3),c(1E3))
# Importance
impSamp(unnGauss,function(x) x)



Gaussian example

sd=.05;mu=5

Real normalization constant Z: 0.125

Cubature estimate of Z: 0 (oops)

Importance sampling:
Estimated mean: 5.000
Avg. importance weight (Z): 0.132 (close)



Importance sampling

If we were interested in the marginal likelihood, we would propose µ
and σ rather than x (and would need priors for both)



Importance sampling

General-purpose Monte Carlo method for approximating
parameter distributions
Can exploit knowledge about high-density regions of posterior
Can compute expectations of functions of params
Requires good proposals

Increasingly so as dimensionality goes up
In these cases, additional tricks may be necessary, e.g.,

annealed importance sampling (link)
Inference trees (link)

https://link.springer.com/article/10.1023/A:1008923215028
https://arxiv.org/abs/1806.09550


Harmonic mean estimation

See “The Harmonic Mean of the Likelihood: Worst Monte Carlo
Method Ever” by Radford Neal. (link)

Excerpts:

“abysmal performance in most real problem[s]”
“the total unsuitability of the harmonic mean estimator should
have been apparent within an hour of its discovery”

Don’t use it.

https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/


Transdimensional MCMC

Use Markov Chain Monte Carlo, combining multiple models
into a single overarching one
Nice in principle
Often difficult / fiddly in practice
Out of scope for this course



Savage-Dickey density ratio

Efficiently compare nested probabilistic models
Effectively a better and Bayesian alternative to the
likelihood-ratio test

See recommended reading to learn more



BIC

BIC = 2 · NLL + K log(N)

where N is the number of data points and K is the number of
parameters.

Motivated by model comparison per se, not prediction
Can be understood as a “minimum description length”
approach
Like AIC, a model-comparison method that boils down to MLE
likelihoods and counting parameters
Like AIC, rests on assumptions; guarantees are asymptotic
Easy!
Safer than AIC if arguing for a more complex model



Summary

If you care about parameter identifiability, check!
Many methods for approximating the marginal likelihood
Easy cases:

low-dimensional models (numerical integration, importance
sampling)
nested models (Savage-Dickey)
conjugate priors (didn’t discuss)

Hard case: High-dimensional, non-conjugate, non-nested
Transdimensional MCMC (out of scope)
Clever/lucky proposals
Annealed importance sampling (out of scope)


