Computational Cognitive Science

Lecture 5: Parameters and Probabilities 2

Chris Lucas

School of Informatics

University of Edinburgh

October 1, 2019



Readings

o Chapter 6 of F&L



MLE/MAP Recap

Last time, we discussed MLE and MAP estimates:

@ MLE: Choose the 8 that makes y most probable, ignoring p(8).
@ MAP: Choose the @ that is most probable given y.

MAP with non-uniform priors can improve estimates and reduce
overfitting.

In general, parameters are continuous, so the MAP maximizes the
density — the probability that the parameters take those values is
still infintesimal.



Today

@ Estimating parameters in a simple discrete-choice experiment
@ Compare MLE, MAP, and Bayesian methods
@ Brief introduction to conjugate priors



Left-right bias

In 1977, Nisbett and Wilson reported a study where people has been
asked to choose between four identical pairs of stockings: A, B, C,
D from left to right?.

A B C D
This is similar to the coin example from C6 of F&L, but it involves
more than two outcomes and is about human decisions.

!Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know:
Verbal reports on mental processes. Psychological Review, 84(3), 231.



Left-right bias

Suppose we observe 8 choices.

Choice A B C D
Number O 2 2 4

We want to know how biased people are in general and predict the
judgments of the remaining 44 participants.

We can capture this with a multinomial distribution:
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where y; is the count of choices in the i*" category and 3,6, = 1.

What are our options for estimating 07



Left-right bias

Q@ MLE
@ MAP
© Bayesian approaches



1. MLE: arg max, = L(0]y)

The multinomial’s parameters are choice probabilities, and one can
show that the MLE parameters are just the proportions:

Yi
0; =
>k Yk
Choice A B C D
Obs. (n=38) 0
OmiLE 0 .25 .25 5

This maximizes the probability of the data in retrospect, but it's not
ideal for predictions.

For example, someone will probably, eventually, choose option A.



2. MAP estimate: arg maxy = L(0]y)p(0)

If we know or believe something about choices in this setting, we
should probably use it.

@ We might expect that any bias won't be extreme; a few people
will probably choose every option
@ Like a coin where we expect to be close to fair

How do we express this?



Priors

In choosing priors, we ideally want a distribution that:

@ has support for all remotely possible values, i.e., assigns
non-zero probability to them

@ is easy to interpret and communicate

o allows efficient computation of a posterior distribution



Dirichlet distribution

There are many options, but here we might use a Dirichlet
distribution with hyperparameters o:

p(0]0) = gy I

@ Can capture intiutions about differences in proportions and in
concentration
e «a: “"Concentration parameters”
e «; >0, one per 6§
e “virtual observations”
o Can translate beliefs about P(cy < 0; < ¢1) into
hyperparameters
e Familiar to many cognitive scientists



Dirichlet distribution

p(0]0) = g5 107

The beta distribution (F&L C6) is 2-group Dirichlet distribution.

a=[5.5.5] a=[111] a=[222

Also, it is a conjugate prior for the multinomial distribution.



Conjugate priors

When the posterior probability function and the prior have the same
form, they're conjugate.

If we can find a reasonable conjugate prior for our likelihood
function, life is easier:

@ Simplifies computation
@ Makes interpretation of the posterior easier



Conjugate priors

Some commonly-used likelihood /conjugate prior pairs:

Likelihood Conjugate prior
Bernoulli beta

binomial beta
categorical Dirichlet
multinomial Dirichlet

normal normal




Dirichlet-multinomial

Our prior:
_ 1 a;i—1 ai—1

Our likelihood:

P(yle) = %i?' [Tor < TTor

Our posterior:

p(O\y) x H 0/?”71 H 9{' = Hgiai—l-i-}’i

i

This is an un-normalized Dirichlet distribution; divide by B(a + y)
and we have a Dirichlet. See text for more detail in a 2-choice
setting.



Dirichlet-multinomial

Our prior is Dir(azq, ..., k) and our posterior is
Dir(a1 + y1, ..., ok + Yk )-

@ We can think of « as pseudo-observations.

If we believe a bias for each group is equally likely, a; = a.
As « increases, the Dirichlet distribution increasingly favors an
equal distribution over choices.

For o =1, all valid parameter combinations are equally likely.
a =1/K is a Jeffreys prior; see the text.

e ©



Left-right bias

If we think extreme biases are unlikely, we can use o = 2.0.2

.. L . o ai—1

The mode of a Dirichlet distribution is 6; = S K
Choice A B C D
Obs. (n=8) 0 2 2 4
OmLE 0 .25 .25 5
Omap .08 .25 .25 42

2Under this choice, each parameter’s marginal probability of being between .1
and .4 is about 70 percent.



Left-right bias

If we think extreme biases are unlikely, we can use a = 2.0. The

mode of a Dirichlet distribution is 6; = ZO"T_:_K
k

Choice A B C D
Obs. (n=8) 0 2 2 4
OmLE 0 .25 .25 5
Omap .08 .25 .25 A2

Data (n=52) 12 17 31 40




3. Bayesian approaches

The MAP estimate doesn't account for uncertainty or the shape of

p(Oly).
@ If our prior is uniform, MAP = MLE; we're back to estimating

zero-probabilities.
Compare two densities, where 6 is the bias of a coin toward heads:

f(Oly)

0 0

@ The mode of the posterior is the same for both.

@ Which are we more confident of?
@ Which coin do we think is more likely to come up heads?



3. Bayesian approaches

If we have a posterior distribution, we can ask:

@ What is the expected value of ;73

E[0i]y] = /9_ 0;f(0i]y)do;

e What is the probability that the next choice/toss will be in
category i (xky1 =1)?

Plxicis = ily) = | Pluci = i10)F(6ily)dt,

Because 0; is P(xkx+1 = i|0;), these are the same (here).

3Notice that we're writing down f(6;|y) directly — we get this distribution for
free; another nice property of the Dirichlet distribution.



3. Bayesian approaches

For a Dirichlet-multinomial,

. aj + yi

Pxki1 =iy, a) = =——

b = ily: @) = o )
Choice A B C D
Obs. (n=8) 0 2 2 4
OmLE 0 .25 .25 b
Omap .08 .25 .25 42
P(xk+1 =1) 12 .25 .25 .38
Data (n=52) .12 .17 31 .40




3. Bayesian approaches

We can also answer other questions, e.g.,

@ How likely is it that people are choosing option D more than 25
percent of the time?
° P(04 > 25|y)
@ How likely is it that people are choosing uniformly (null hyp)?
o Forall i, P(6; = .25 £ €|y)
@ What is the standard deviation of 6,7
@ What is the probability that 61 + 6, > 63 + 047



3. Bayesian approaches

To summarize, some advantages of Bayesian approaches over MLE:

@ Sensible priors and averaging both help us avoid overfitting
e This allows more complex models, including cases where MLEs
aren't unique
@ Can answer diverse questions, e.g., support for null hypotheses
@ Naturally lead to hierarchical models
o Individual differences — next time
@ We used a classic conjugate prior
o Not always so easy; see C7 of F&L



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?

© Computational complexity
e Conjugate priors aren't always appropriate
e Inference can be computationally expensive



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?

@ Convention, momentum, philosophical differences
o More psychologists use/understand* frequentist methods
o Out-of-the-box hypothesis tests are less work
e Suspicion about priors



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?

© Technical barriers
o Bayesian methods expose more mathematical detail
e Until recently, few good tools for running non-trivial Bayesian
analyses

But:

@ Faster computers
e Friendlier/better tools, e.g.,
e JAGS (F&L)
e Stan
@ Wider adoption and better dissemination
e Bayesian analyses much more common than 5-10 years ago
o Materials for wider audiences, e.g., Kruschke's “puppy book”



Summary

MLE and MAP generate point estimates of the parameters
Sensible priors can mitigate overfitting until MAP estimation
Better yet: Bayesian methods — priors and integrating over
parameters

o less prone to overfitting and allows better use of informative

priors

o allows more questions to be answered more directly
Conjugate prior distributions, where the prior and the posterior
have the same form given a particular likelihood function

o Easily-interpretable posteriors

o Closed-form expressions for many quantities of interest



