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Readings

Chapter 6 of F&L



MLE/MAP Recap

Last time, we discussed MLE and MAP estimates:

MLE: Choose the θ that makes y most probable, ignoring p(θ).
MAP: Choose the θ that is most probable given y.

MAP with non-uniform priors can improve estimates and reduce
overfitting.

In general, parameters are continuous, so the MAP maximizes the
density – the probability that the parameters take those values is
still infintesimal.



Today

Estimating parameters in a simple discrete-choice experiment
Compare MLE, MAP, and Bayesian methods
Brief introduction to conjugate priors



Left-right bias

In 1977, Nisbett and Wilson reported a study where people has been
asked to choose between four identical pairs of stockings: A, B, C,
D from left to right1.

A B C D

This is similar to the coin example from C6 of F&L, but it involves
more than two outcomes and is about human decisions.

1Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know:
Verbal reports on mental processes. Psychological Review, 84(3), 231.



Left-right bias
Suppose we observe 8 choices.

Choice A B C D

Number 0 2 2 4

We want to know how biased people are in general and predict the
judgments of the remaining 44 participants.

We can capture this with a multinomial distribution:

P(y|θ) = (
∑

i yi)!∏
i yi !

∏
i
θyi

i

where yi is the count of choices in the i th category and
∑

i θi = 1.

What are our options for estimating θ?



Left-right bias

1 MLE
2 MAP
3 Bayesian approaches



1. MLE: arg maxθ = L(θ|y)

The multinomial’s parameters are choice probabilities, and one can
show that the MLE parameters are just the proportions:

θi = yi∑
k yk

Choice A B C D

Obs. (n=8) 0 2 2 4
θMLE 0 .25 .25 .5

This maximizes the probability of the data in retrospect, but it’s not
ideal for predictions.

For example, someone will probably, eventually, choose option A.



2. MAP estimate: arg maxθ = L(θ|y)p(θ)

If we know or believe something about choices in this setting, we
should probably use it.

We might expect that any bias won’t be extreme; a few people
will probably choose every option
Like a coin where we expect to be close to fair

How do we express this?



Priors

In choosing priors, we ideally want a distribution that:

has support for all remotely possible values, i.e., assigns
non-zero probability to them
is easy to interpret and communicate
allows efficient computation of a posterior distribution



Dirichlet distribution

There are many options, but here we might use a Dirichlet
distribution with hyperparameters α:

p(θ|α) = 1
B(α)

∏
i
θαi −1

i

Can capture intiutions about differences in proportions and in
concentration

α: “Concentration parameters”
αi > 0, one per θ
“virtual observations”
Can translate beliefs about P(c0 < θi < c1) into
hyperparameters

Familiar to many cognitive scientists



Dirichlet distribution

p(θ|α) = 1
B(α)

∏
i
θαi −1

i

The beta distribution (F&L C6) is 2-group Dirichlet distribution.

α = [.5 .5 .5] α = [1 1 1] α = [2 2 2]
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Also, it is a conjugate prior for the multinomial distribution.



Conjugate priors

When the posterior probability function and the prior have the same
form, they’re conjugate.

If we can find a reasonable conjugate prior for our likelihood
function, life is easier:

Simplifies computation
Makes interpretation of the posterior easier



Conjugate priors

Some commonly-used likelihood/conjugate prior pairs:

Likelihood Conjugate prior

Bernoulli beta
binomial beta
categorical Dirichlet
multinomial Dirichlet
normal normal



Dirichlet-multinomial
Our prior:

p(θ|α) = 1
B(α)

∏
i
θαi −1

i ∝
∏

i
θαi −1

i

Our likelihood:

P(y|θ) = (
∑

i yi)!∏
i yi !

∏
i
θyi

i ∝
∏

i
θyi

i

Our posterior:

p(θ|y) ∝
∏

i
θαi −1

i
∏

i
θyi

i =
∏

i
θαi −1+yi

i

This is an un-normalized Dirichlet distribution; divide by B(α + y)
and we have a Dirichlet. See text for more detail in a 2-choice
setting.



Dirichlet-multinomial

Our prior is Dir(α1, ..., αK ) and our posterior is
Dir(α1 + y1, ..., αK + yK ).

We can think of α as pseudo-observations.
If we believe a bias for each group is equally likely, αi = α.
As α increases, the Dirichlet distribution increasingly favors an
equal distribution over choices.
For α = 1, all valid parameter combinations are equally likely.
α = 1/K is a Jeffreys prior; see the text.



Left-right bias

If we think extreme biases are unlikely, we can use α = 2.0.2

The mode of a Dirichlet distribution is θi = αi −1∑
k αk−K .

Choice A B C D

Obs. (n=8) 0 2 2 4
θMLE 0 .25 .25 .5
θMAP .08 .25 .25 .42

2Under this choice, each parameter’s marginal probability of being between .1
and .4 is about 70 percent.



Left-right bias

If we think extreme biases are unlikely, we can use α = 2.0. The
mode of a Dirichlet distribution is θi = αi −1∑

k αk−K .

Choice A B C D

Obs. (n=8) 0 2 2 4
θMLE 0 .25 .25 .5
θMAP .08 .25 .25 .42
Data (n=52) .12 .17 .31 .40



3. Bayesian approaches

The MAP estimate doesn’t account for uncertainty or the shape of
p(θ|y).

If our prior is uniform, MAP = MLE; we’re back to estimating
zero-probabilities.

Compare two densities, where θ is the bias of a coin toward heads:

θ θ

f(
θ|
y)

The mode of the posterior is the same for both.
Which are we more confident of?
Which coin do we think is more likely to come up heads?



3. Bayesian approaches

If we have a posterior distribution, we can ask:

What is the expected value of αi?3

E [θi |y] =
∫

θi
θi f (θi |y)dθi

What is the probability that the next choice/toss will be in
category i (xK+1 = i)?

P(xK+1 = i |y) =
∫

θi
P(xK+1 = i |θi)f (θi |y)dθi

Because θi is P(xK+1 = i |θi), these are the same (here).

3Notice that we’re writing down f (θi |y) directly – we get this distribution for
free; another nice property of the Dirichlet distribution.



3. Bayesian approaches

For a Dirichlet-multinomial,

P(xK+1 = i |y,α) = αi + yi∑
j(αj + yj)

Choice A B C D

Obs. (n=8) 0 2 2 4
θMLE 0 .25 .25 .5
θMAP .08 .25 .25 .42
P(xK+1 = i) .12 .25 .25 .38
Data (n=52) .12 .17 .31 .40



3. Bayesian approaches

We can also answer other questions, e.g.,

How likely is it that people are choosing option D more than 25
percent of the time?

P(θ4 > .25|y)
How likely is it that people are choosing uniformly (null hyp)?

For all i , P(θi = .25± ε|y)
What is the standard deviation of θi?
What is the probability that θ1 + θ2 > θ3 + θ4?



3. Bayesian approaches

To summarize, some advantages of Bayesian approaches over MLE:

Sensible priors and averaging both help us avoid overfitting
This allows more complex models, including cases where MLEs
aren’t unique

Can answer diverse questions, e.g., support for null hypotheses
Naturally lead to hierarchical models

Individual differences – next time
We used a classic conjugate prior

Not always so easy; see C7 of F&L



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?
1 Computational complexity

Conjugate priors aren’t always appropriate
Inference can be computationally expensive



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?
2 Convention, momentum, philosophical differences

More psychologists use/understand* frequentist methods
Out-of-the-box hypothesis tests are less work
Suspicion about priors



3. Bayesian approaches

Why doesn’t everyone use Bayesian methods?
3 Technical barriers

Bayesian methods expose more mathematical detail
Until recently, few good tools for running non-trivial Bayesian
analyses

But:

Faster computers
Friendlier/better tools, e.g.,

JAGS (F&L)
Stan

Wider adoption and better dissemination
Bayesian analyses much more common than 5-10 years ago
Materials for wider audiences, e.g., Kruschke’s “puppy book”



Summary

MLE and MAP generate point estimates of the parameters
Sensible priors can mitigate overfitting until MAP estimation
Better yet: Bayesian methods – priors and integrating over
parameters

less prone to overfitting and allows better use of informative
priors
allows more questions to be answered more directly

Conjugate prior distributions, where the prior and the posterior
have the same form given a particular likelihood function

Easily-interpretable posteriors
Closed-form expressions for many quantities of interest


