
Inf3 Computer Architecture Practical Assignment 2

Understanding Caches

Issued : 28th February 2014

Due : 21st March 2014 at 4.00pm (at the ITO)

This assignment represents the second practical component of the Computer Architecture module of
Inf3. This practical contributes 20% of the overall mark for the module. It consists of a
programming exercise culminating in a brief written report. Assessment of this practical will be
based on the correctness and the clarity of the solution (see more details below), and on the
completeness and clarity of the written report. This practical is to be solved individually to assess
your competence on the subject. Please bear in mind the School of Informatics guidelines on
plagiarism. You must return your solutions to the ITO before the due date shown above. Follow the
instructions provided in Section II for submission details.

In this practical you are required to build a simulator to explore caches. You are strongly advised to
read up on cache architectures in the course textbook and commence work as soon as possible.

Finally, you are required to document your experiments and inferences from these experiments,
along with the structure of your simulator and any additional information in a hand written report
and submit it before the deadline.

1. Experiments
A detailed understanding of the cache’s dynamic behaviour is usually obtained by software
simulation rather than monitoring of hardware. In this exercise you are asked to investigate the
memory access behaviour of a pair of benchmarks (gcc and mcf) which are part of the SPEC2006
benchmark suite. To do this, you will have to write a reasonably flexible cache simulator. Assume
the following specifications in designing the cache simulator. Memory addresses are 48 bits long.
Data in memory is organized in blocks of 32 bytes. Assume a write through cache with LRU
replacement policy for set associative caches.

You must write a program which accepts a trace file as input and reports upon its behaviour. The
cache configuration (number of blocks, size of blocks, associativity and so on) should be described
as command line switches. The output of the simulator should be the total miss-rate, memory read
miss-rate and memory write miss-rate. You are required to provide a readme file with the cache
simulator with a description of it’s compilation and execution procedure.

As part of the experiments, you are required to generate the miss-rate by varying the cache size
from 4 Kilobytes to 64 Kilobytes by varying both the number of ways and the number of sets in
the cache. To do this, first assume a direct-mapped cache and increase the number of sets so that the
cache size varies from 4 KB to 64KB doubling the cache size each time. Do the same for a 2-way,
4-way, 8-way and 16-way set associative cache. Represent the results in appropriate graphs. Also
present your inference from these experiments in your report.

The trace file for cache simulation contains the sequence of memory operations (Read -R, Write -
W) and the addresses they access. An example of the trace file is as follows. The trace file consists

Inf3 Computer Architecture Practical Assignment 2

of raw addresses and not block addresses. Therefore, you will have to decode the block addresses
from these raw addresses in order to be used in your cache simulator.

R 8cda3fa8
R 8158bf90
W 8cd94c50
R 8cd94c60
W 8cd94c60

To summarize, in this experiment you are required to write a cache simulator which reads a trace of
memory references and generates the miss-rate. Also, generate the miss-rate for memory reads and
memory writes separately. The cache parameters should be read into the simulator as command line
switches. Determine the miss-rate for several cache configurations by varying the associativity and
the number of sets in the cache. Present your inference from these experiments in your written
report.

2. Common Instructions

1. Format of your submission

Your submission should clearly indicate (in both the report and the code) which cache features you
have simulated completely and which you have only partially completed.

You should mail a copy of your simulator and a soft copy of your report (compressed file titled
<name_regno.tar.gz>), to ajmcpherson@ed.ac.uk before 4pm on 21 March 2014. Make sure that
your simulator is accompanied by a readme file detailing the compilation and execution procedure
of your simulator.

You should also submit a printed copy of your report, neatly bound or otherwise collated and
marked clearly with your name and your tutor’s name, to the ITO before 4pm on 21st March 2014.

The report should contain the following details:
1. Written description of the internal structure and workings of your simulator (1 page

depending upon complexity), explaining clearly which parts are complete and which
incomplete.

2. A report detailing the experiments you ran and giving a critical summary of the results (1-2
pages including results). You should provide enough information to make the experiments
repeatable. Present your data clearly and concisely. Also present any inferences you have
obtained from the results of these experiments.

3. A separate readme file stating which parts are complete and how to run the simulator.

3. Marking Scheme
• Direct-mapped cache – 36%

◦ 12% each for total miss rate, memory read miss rate and memory write miss rate.
• Set-associative cache – 36%

◦ 12% each for total miss rate, memory read miss rate and memory write miss rate.
• Clarity of code within the simulator(s) - 3%

Inf3 Computer Architecture Practical Assignment 2

• Report on the Simulator – 10%
◦ 6% for stating internal structure – this should be an overview of the major components

structured in a logical manner
◦ Readme file 4%

▪ 1% for stating which parts are complete and which incomplete.
▪ 3% for instructions on how to use the simulator and clarity of readme as a whole.

• Report on Experiments – 15%
◦ 5% on stating which experiments were run and repeatability of experiments.
◦ 5% on critical summary of the results and clarity of presentation
◦ 5% on inferences drawn from the results.

Your mark will then be scaled to be worth 20% of the course.

In the case of incomplete/inaccurate predictors efforts will be made to give partial credit for what
work has been completed. Clear comments explaining the important tasks (and where they are
missing/failing) will increase your chances of receiving credit.

N.B. Marks will be deducted if you go over the page limit on reports for either the simulator or the
experiments.

4. Working in Stages
This section contains some suggestions as to how you might tackle the work in stages. There
is no obligation to follow these, but your report must make it clear exactly what your simulator
can handle.

Stage 0

Find the code for your simulator from the first assignment and re-familiarise yourself with it
sufficiently that you can use it for this assignment. (Alternatively you can write a new simulator
from scratch – this is not recommended!)

Stage 1

Restrict your simulator to direct mapped caches (in other words the set associativity must be 1). You
can test this out with hand generated traces. Verify that your simulator is doing what you think.
Write trace files with easily predictable hit rates (e.g. think of a four access trace which uses four
different addresses and has a 50% hit rate).

Stage 2

Upgrade your simulator to cater for genuinely set-associative caches (i.e. with set size greater than
1). You could start by assuming some fixed scheme for resolving clashes (e.g. random) and then
build in the ability to simulate LRU. You can use hand generated traces which access the same set
in the cache but are to different cache blocks. Verify which blocks are getting replaced and when.
This will help you verify the LRU policy for set-associative caches.

Stage 3

Once you have verified your cache simulator, start running the required experiments by fixing the
associativity and changing the cache size. Repeat the same for different associativity values. Don’t

Inf3 Computer Architecture Practical Assignment 2

forget to add the results and your inferences from it in your report.

5. Reporting Problems
Send email to ajmcpherson@ed.ac.uk for any issues regarding the assignment.

