
Inf3 Computer Architecture tutorial 4 - week 7

Computer Architecture – tutorial 4[SOLUTIONS]

Context, Objectives and Organization

This worksheet covers the material from lectures on Caches. The goal of the quantitative
exercises in this tutorial is to familiarize you with quantitative analysis of caches (E1) and
to investigate the tradeoffs between write-through and write-back caches (E2 and E3).

E1: individual – 10 min

Problem
Assume we have a computer where the CPI is 1.0 when all memory accesses (including

data and instruction accesses) hit in the cache. The cache is a unified (data + instruction)
cache of size 256 KB, 4-way set associative, with a block size of 64 bytes. The data accesses
(loads and stores) constitute 50% of the instructions. The unified cache has a miss penalty
of 25 clock cycles and a miss rate of 2%. Assume 32 bit instruction and data addresses.

a. What is the tag size for the cache?
b. How much faster would the computer be if all memory accesses were cache hits?
Solution

Number of bits used for block offset = log 64 = 6.
Number of sets in the cache = 256K/(64 * 4) = 1K
Number of bits for index = log 1K = 10
Number of bits for tag = 32 - (10 + 6) = 16

Now,
CPI = CPIexecution + StallCyclesPerInstruction
For computer that always hits, CPI = 1
For computer with non-zero miss rate, let us compute StallCyclesPerInstruction
StallCyclesPerInstruction = (Memory accesses per instr) * miss rate * miss penalty
Memory accesses per instruction = 1 + 0.5 (1 instruction access + 0.5 data access)
StallCyclesPerInstruction = 1.5 * 0.02 * 25 = 0.75
Therefore, CPI = 1.75
The computer with no cache misses is 1.75 times faster.

E2: groups of 2 – 15 min

Problem
You purchased an Acme computer with the following features:

• 95% of all memory accesses are found in the cache.

1



Inf3 Computer Architecture tutorial 4 - week 7

• Each cache block is two words, and the whole block is read on any miss.

• The processor sends references to its cache at the rate of 109 words per second.

• 25% of those references are writes.

• Assume that the memory system can support 109 words per second, reads or writes.

• The bus reads or writes a single word at a time (the memory system cannot read or
write two words at once).

• Assume at any one time, 30% of the blocks in the cache have been modified.

• The cache uses write allocate on a write miss.

You are considering adding a peripheral to the system, and you want to know how much
of the memory system bandwidth is already used. Calculate the percentage of memory sys-
tem bandwidth used on the average in the two cases below. Be sure to state your assumptions.

a. The cache is write through.
b. The cache is write back.
Solution

We know:
Miss rate = 0.05
Block size = 2 words (8 bytes)
Frequency of memory operations from processor = 109

Frequency of writes from processor = 0.25 ∗ 109

Bus can only transfer one word at a time to/from processor/memory
On average 30% of blocks in the cache have been modified (must be written back in the

case of the write back cache)
Cache is write allocate
So:
Fraction of read hits = 0.75 ∗ 0.95 = 0.7125
Fraction of read misses = 0.75 ∗ 0.05 = 0.0375
Fraction of write hits = 0.25 ∗ 0.95 = 0.2375
Fraction of write misses = 0.25 ∗ 0.05 = 0.0125

a. Write through cache

Then:
On a read hit there is no memory access
On a read miss memory must send two words to the cache
On a write hit the cache must send a word to memory

2



Inf3 Computer Architecture tutorial 4 - week 7

On a write miss memory must send two words to the cache, and then the cache must
send a word to memory

Thus:
Average words transferred = 0.7125 ∗ 0 + 0.0375 ∗ 2 + 0.2375 ∗ 1 + 0.0125 ∗ 3 = 0.35
Average bandwidth used = 0.35 ∗ 109

Fractionofbandwidthused =
0.35 ∗ 109

109
= 0.35 (1)

b. Write back cache

Then:
On a read hit there is no memory access
On a read miss:
1. If replaced line is modified then cache must send two words to memory, and then

memory must send two words to the cache
2. If replaced line is clean then memory must send two words to the cache
On a write hit there is no memory access
On a write miss:
1. If replaced line is modified then cache must send two words to memory, and then

memory must send two words to the cache
2. If replaced line is clean then memory must send two words to the cache
Thus:
Average words transferred = 0.7125 ∗ 0 + 0.0375 ∗ (0.7 ∗ 2 + 0.3 ∗ 4) + 0.2375 ∗ 0 + 0.0125 ∗

(0.7 ∗ 2 + 0.3 ∗ 4) = 0.13 Average bandwidth used = 0.13 ∗ 109

Fractionofbandwidthused =
0.13 ∗ 109

109
= 0.13 (2)

Comparing 1 and 2 we notice that the write through cache uses more than twice the
cache-memory bandwidth of the write back cache.

E3: groups of 2 – 15 min

Problem
One difference between a write-through cache and a write-back cache can be in the time

it takes to write. During the first cycle, we detect whether a hit will occur, and during the
second (assuming a hit) we actually write the data. Let’s assume that 50% of the blocks are
dirty for a write-back cache. For this question, assume that the write buffer for the write
through will never stall the CPU (no penalty). Assume a cache read hit takes 1 clock cycle,
the cache miss penalty is 50 clock cycles, and a block write from the cache to main memory
takes 50 clock cycles. Finally, assume the instruction cache miss rate is 0.5% and the data

3



Inf3 Computer Architecture tutorial 4 - week 7

cache miss rate is 1%. Assuming that on average 26% and 9% of instructions in the workload
are loads and stores, respectively, estimate the performance of a write-through cache with a
two-cycle write versus a write-back cache with a two-cycle write.
Solution

CPU performance equation: CPUTime = IC ∗ CPI ∗ ClockT ime
CPI = CPIexecution + StallCyclesPerInstruction
We know:
Instruction miss penalty is 50 cycles
Data read hit takes 1 cycle
Data write hit takes 2 cycles
Data miss penalty is 50 cycles for write through cache
Data miss penalty is 50 cycles or 100 cycles for write back cache
Miss rate is 1% for data cache (MRD) and 0.5% for instruction cache (MRI)
50% of cache blocks are dirty in the write back cache
26% of all instructions are loads
9% of all instructions are stores
Then:
CPIexecution = 0.26 ∗ 1 + 0.09 ∗ 2 + 0.65 ∗ 1 = 1.09
Write through
StallCyclesPerInstruction = MRI ∗ 50 + MRD ∗ (0.26 ∗ 50 + 0.09 ∗ 50) = 0.425
so:

CPI = 1.09 + 0.425 = 1.515 (3)

Write back
StallCyclesPerInstruction = MRI ∗ 50 + MRD ∗ (0.26 ∗ (0.5 ∗ 50 + 0.5 ∗ 100) + 0.09 ∗

(0.5 ∗ 50 + 0.5 ∗ 100)) = 0.5125
so:

CPI = 1.09 + 0.5125 = 1.6025 (4)

Comparing 3 and 4 we notice that the system with the write back cache is 6% slower.

Boris Grot 2018. Thanks to Vijay Nagarajan, Nigel Topham and Marcelo Cintra

4


