
Introduction to Multiprocessors

§ Why Multiprocessors?

Inf3 Computer Architecture - 2017-2018 1

A bit of history…

§ Back to the early 2000s….

§ Intel supposed to come up their with their new
processors (Tejas and Jayhawk) clocked at 5-10
GHz.

Inf3 Computer Architecture - 2017-2018 2

A bit of history…

§ Back to the early 2000s….

§ Intel supposed to come up with their new
processors (Tejas and Jayhawk) clocked at 5-10
GHz.

§ Instead:

Inf3 Computer Architecture - 2017-2018 3

Inf3 Computer Architecture - 2017-2018 4

Enter multiprocessors

Why multiprocessors?
– ILP Wall

§ Limitation of ILP in programs
§ Complexity of superscalar design

– Power Wall
§ ~100W/chip with conventional cooling

– Cost-effectiveness:
§ Easier to connect several ready processors than designing a

new, more powerful, processors

Chip multiprocessors (CMPs):
the dividends of Moore’s Law

– Billions of transistors per chip affords many (10-100s) of
cores

Today’s Chip Multiprocessors

Inf3 Computer Architecture - 2017-2018 5

Intel Xeon Phi: 72 cores
(aka Knight’s Landing)

Oracle M7:
32 cores

Exynos 7 (Samsung): 8 cores

But…

Software must expose the parallelism
– Programmers need to write parallel programs
– Legacy code need to be parallelized

Inf3 Computer Architecture - 2017-2018 6

…as hard as any (problem) that
computer science has faced.

John Hennessy: recipient of the 2018 Turing Award

Inf3 Computer Architecture - 2017-2018 7

Amdahl’s Law and Efficiency

§ Let: F ® fraction of problem that can be parallelized
Spar ® speedup obtained on parallelized fraction
P ® number of processors

§ e.g.: 16 processors (Spar = 16), F = 0.9 (90%),

Soverall =
1

(1 – F) +
F

Spar

Soverall =
1

(1 – 0.9) +
0.9

16

= 6.4

Efficiency =
Soverall

P

Efficiency =
6.4

16
= 0.4 (40%)

Parallelism not always easy or free

§ “Embarrassing” parallelism: little effort is
required to generate a correct, completely
parallel algorithm
– E.g. find a unique key in an unsorted dataset.

Each thread processes a fixed number of sequential
elements until a key is found or dataset is exhausted.

§ But what if threads need to communicate?
– E.g., producer-consumer communication

Consider a database query in which one thread extracts
students taking a particular class, and passes the
results to another thread that computes their GPA.

Inf3 Computer Architecture - 2017-2018 8

Inf3 Computer Architecture - 2017-2018 9

Inter-processor Communication Models

§ Shared memory

flag = 0;
…
data = 10;
flag = 1;

flag = 0;
…
while (!flag) {}
x = data * y;

Producer (p1) Consumer (p2)

Inf3 Computer Architecture - 2017-2018 10

Inter-processor Communication Models

§ Shared memory

§ Message passing

flag = 0;
…
data = 10;
flag = 1;

flag = 0;
…
while (!flag) {}
x = data * y;

Producer (p1) Consumer (p2)

…
data = 10;
send(p2, data, label);

…
receive(p1, b, label);
x = b * y;

Producer (p1) Consumer (p2)

Shared Memory: Pros & Cons

§ Shared memory pros
– Easier to program

§ correctness first, performance later

§ Shared memory cons
– Synchronization complex
– Communication implicit à harder to optimize
– Must guarantee coherence

Inf3 Computer Architecture - 2017-2018 11

HW Support for Shared Memory

§ Cache Coherence
– Caches + multiprocessers à stale values
– System must behave correctly in the presence of

caches à RAW, WAR and WAW dependencies must be
observed across all threads
§ Operations are on memory addresses: renaming not an option

§ Memory Consistency
– How are memory operations to different memory

addresses orders?

§ Primitive synchronization
– Memory fences: memory ordering on demand
– Atomic operations (e.g., Read-Modify-Write): support

for locks (to protect critical sections)

Inf3 Computer Architecture - 2017-2018 12

Cache Coherence

Inf3 Computer Architecture - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

p2 should be able to see the latest value of flag & data

13

Memory Consistency

Inf3 Computer Architecture - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

If p2 sees the update to flag, will p2 see the update to data?

14

Primitive Synchronization

Inf3 Computer Architecture - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

fence

fence

15

The memory fence ensures that loads and stores are
correctly ordered across threads

Parallel Architectures

§ Types of parallelism
§ Uniprocessor parallelism (advance concepts)
§ Shared memory multiprocessors

– Cache coherence and Consistency
– Synchronization and transactional memory

§ Hardware Multithreading
§ Vector processors and GPUs
§ Supercomputer and Datacentre architectures (if

time permits)

Inf3 Computer Architecture - 2017-2018 16

The End!

§ Student feedback questionnaires
https://edin.ac/CEQ
– We listen! Please provide feedback.

§ Exam: May 1, 09:30 to 11:30
– Similar in format and spirit to previous years

Inf3 Computer Architecture - 2017-2018 17

https://edin.ac/CEQ

