Branch Prediction

= Static Branch Prediction
= Dynamic Branch Prediction

= Note: Assignment 1: due Feb 19th.

Static Branch Prediction

= Compiler determines whether branch is likely to be taken or
likely to be not taken.

- How?

int gtz=0;
int 1 = 0;

while (i < 100) {
x = a[i];

When is a branch likely to be taken?

if (x == 0)
When is a branch likely to be NOT taken? continue:;
gtz++;

}

Inf3 Computer Architecture - 2017-2018

Static Branch Prediction

= Compiler determines whether branch is likely to be taken or
likely to be not taken.

= Decision is based on analysis or profile information

- 90% of backward-going branches are taken

- 50% of forward-going branches are not taken
- BTFN: “backwards taken, forwards not-taken”
- Used in ARC 600 and ARM 11

= Decision is encoded in the branch instructions themselves

- Uses 1 bit: 0 => not likely to branch, 1=> likely to branch
= Prediction may be wrong!

— Must kill instructions in the pipeline when a bad decision is made

- Speculatively issued instructions must not change processor
state

Inf3 Computer Architecture - 2017-2018

Dynamic Branch Prediction

Monitor branch behavior and learn

- Key assumption: past behavior indicative of future behavior

Predict the present (current branch) using learned history

|dentify individual branches by their PC or dynamic branch
history

Predict:
— Qutcome: taken or not taken
— Target: address of instruction to branch to

Check actual outcome and update the history

Squash incorrectly fetched instructions

Inf3 Computer Architecture - 2017-2018

Simplest dynamic predictor: 1-bit Prediction

= 1 bit indicating Taken (1) or Not Taken (O)

= Branch prediction buffers:
— Match branch PC during IF or ID stages

Branch PC | Outcome
0x135c4: add r1,r2,r3 0x135c8 0

0x135c8: bne r1,r0,n ¥ 0x147¢0 1

while (i < 100) {
x = a[i];

= Incurs at least 2 mis-predictions per loop

if (x == 0)
continue;
gtz++;

Problem: “unstable” behavior)

Inf3 Computer Architecture - 2017-2018 5

2-bit (Bimodal) Branch Prediction

= |dea: add hysteresis

— Prevent spurious events from affecting the most likely branch outcome

= 2-bit saturating counter:

- 00: do not take Branch PC | £ e
— 01: do not take 0x135c8

- 10: take 0x147e0

- 11: take

while (i < 100) {
x = al[i];

if (x == 0)
continue;
gtz++;

}

Inf3 Computer Architecture - 2017-2018 6

2-bit (Bimodal) Branch Prediction

= Predictor states: Taken
Taken m
Predict taken Predict taken

(10) (11)

Not taken
Taken Not taken
Y Not taken
Predict not taken Predict not taken
(01) (00)
Taken
Not taken

= Learns biased branches
= N-bit predictor:

- Increment on Taken outcome and decrement on Not Taken outcome
- If counter>(2n-1)/2 then take, otherwise do not take
- Takes longer to learn, but sticks longer to the prediction

Inf3 Computer Architecture - 2017-2018 7

Example of 2-bit (Bimodal) Branch Prediction

= Nested loop:

Loop1: ...

Loop2: ...
bne r1,r0,loop2

\/4

bne r2,r0,loop1

1st outer loop execution:

00 — predict not taken; actually taken — update to 01 (misprediction)
01 — predict not taken; actually taken — update to 10 (misprediction)
10 — predict taken; actually taken — update to 11

11 — predict taken; actually taken

11 — predict taken; actually not taken — update to 10 (misprediction)

Inf3 Computer Architecture - 2017-2018

Example Continued

= 2nd guter loop execution onwards:

- 10 — predict taken; actually taken — update to 11
- 11 — predict taken; actually taken

- 11 — predict taken; actually not taken — update to 10 (misprediction)
= |n practice misprediction rates for 2-bit predictors with 4096 entries in
the buffer range from 1% to 18% (higher for integer applications than for
fp applications)

= Bottom-line: 2-bit branch predictors work very well for loop-intensive
applications

- n-bit predictors (n>2) are not much better
- Larger buffer sizes do not perform much better

Inf3 Computer Architecture - 2017-2018 9

Bimodal (2-bit) predictor logic

PC

Hit? Taken?
0/1
P
‘ T?tgs H |[Targets
(optional) T

BTB

Inf3 Computer Architecture - 2017-2018

R
10

1
/

Next
Fetch
Address

10

Correlating Predictors

= 1- and 2-bit predictors exploit most recent
history of the current branch

= Realization: branches are correlated!

= Local: A branch outcome maybe correlated
with past outcomes (multiple outcomes or
history, not just the most recent) of the same
branch

= Global: A branch outcome maybe correlated
with past outcomes of other branches

Inf3 Computer Architecture - 2017-2018 11

Correlating Predictors (Local)

1- and 2-bit predictors exploit most recent
history of the current branch

Realization: outcomes of same branch correlated!

while (1 < 4) {
x = a[i];

gtz++;
}

= Branch outcomes: 1,1,1,0, 1,1,1,0 1,1,1,0....

Idea: exploit recent history of same branch in prediction

Inf3 Computer Architecture - 2017-2018 12

Correlating Predictors (Global)

= 1- and 2-bit predictors exploit most recent
history of the current branch

= Realization: Different branches maybe correlated!

if (a == 2)
a=20;
if (b == 2)
b=20;
if (a '= b)

.}

char sl = “Bob”

if (sl !'= NULL)
reverse str(sl)y

reverse str(char *#£)
if (sl == NU
return;

If both branches are taken,
the last branch definitely not taken

sl definitely not Null
in this calling context

Inf3 Computer Architecture - 2017-2018

{

13

Correlating Predictors (Global)

= 1- and 2-bit predictors exploit most recent
history of the current branch

= Realization: Different branches maybe correlated!

if (a == 2) char sl = “Bob”

a =0;
if (b == 2) if (sl '= NULL)

b=20; reverse str(sl)y
if (a '= b) {

.} reverse str(char *8) ({

if (sl == NU
return;

Idea: exploit recent history of other branches in prediction

Inf3 Computer Architecture - 2017-2018 14

Global Two-Level (or Correlating) Predictor

= Prediction depends on the context of the branch

= Context: history (T/NT) of the last N branches

— First level of the predictor
- Implemented as a shift register

= Prediction: 2-bit saturating counters

— Indexed with the “global” history
— Second level of the predictor

11/0f... 1

Global History
Register GHR)

000..0 | 00
000..1 | 10
00

111..1 [of

Pattern History
Table (PHT)

Inf3 Computer Architecture - 2017-2018 15

Dynamic Predictor Performance Comparison

Y Accuracy
10C

2-level correlating
predictor with a

/ 15-bit global history

8

88X & &S KR X

|

dod <cpi fpp goc osp eqn li
accuracy for the 2-bit counzer scheme

2-level predictor improves accuracy by >4%

Inf3 Computer Architecture - 2017-2018 16

Does 4% accuracy improvement matter?

= Assume branches resolve in stage 10

- Reasonable for a modern high-frequency processor

= 20% of instructions are branches
= Correctly-predicted branches have a 0-cycle penalty (CPI=1)
= 2-bit predictor: 92% accuracy

= Z2-level predictor: 96% accuracy

2-bit predictor:
CPI=0.8+0.2*(10%0.08 + 1*0.92) =1.114

2-level predictor
CPI=0.8+0.2*(10*0.04 + 1*0.96) = 1.072

Speedup(2-level over 2-bit): 4%

Inf3 Computer Architecture - 2017-2018 17

Branch Target Buffers (BTB)

Branch predictors tell whether the branch will be taken or not, but they
say nothing about the target of the branch

To resolve a branch early we need to know both the outcome and the
target

Solution: store the likely target of the branch in a table (cache) indexed
by the branch PC — BTB

Usually BTB is accessed in the IF stage and the branch predictor is
accessed later in the ID stage

Inf3 Computer Architecture - 2017-2018 18

Branch Prediction Logic of global 2-level predictor @

Which direction earier Direction predictor (2-bit counters)

branches went
1 taken? -
Global branch ol \-\3\
history PC + inst sizg —— 0 Next Fetch
Address

Counter ¢ : o
Address of the ™
current instruction \\

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

Source: Onur Mutlu, CMU

Inf3 Computer Architecture - 2017-2018 19

Bimodal and Global 2-level

= Bimodal (2-bit) Branch Predictor

+ Good for biased branches
+ No interference
- Cannot discern patterns

= Global 2-level Branch Predictor
+ Leverages correlated branches
+ ldentifies patterns

- Cannot always take advantage of biased branches
- Interference

Inf3 Computer Architecture - 2017-2018 20

Interference in Global 2-level Predictors

Pattern History Table

Global History Register 1

1

0
1
0
1
1
1
0

1
1
1
1
0
1
1

0

1

e Branch A is always Not
Taken when GHR 1is 101

e Branch B is a loop with a
million iterations

e Branch A and Branch B
can interfere in entry 5
of the PHT

Biased branches pollute the PHT!!!!

Inf3 Computer Architecture - 2017-2018 21

Tournament Predictor - the best of multiple predictors 3: >

= Most branches are biased (e.g. 99% Taken)

= Filter the biased branches with a simple predictor
(e.g. Bimodal)

= Predict the hard branches with the Global 2-level
predictor

= Use a meta-predictor to chose a different
predictor

= The meta-predictor is a PHT of 2-bit saturating
counters

Inf3 Computer Architecture - 2017-2018 22

Tournament Predictor

GHR

P

: Global 2-level

Predictor

Bimodal
Predictor

U]

Meta
Predictor

0 Taken?
1
1 W
PC+4 ()
Target 1 |Next
Address " / Fetch
from BTB Address

Inf3 Computer Architecture - 2017-2018

23

References

= Different solutions to the problem of interference

— Gshare - Use a hash function to index to the PHT (CAR
assignment uses this as the “global” predictor)

= What is the state of the art ?

- TAGE (Use multiple tagged PHTs for multiple history
lengths)

— Perceptron (Learn the correlations in the global history)
= Branch Prediction Championship

- https://www.jilp.org/cbp2016/

Inf3 Computer Architecture - 2017-2018

24

https://www.jilp.org/cbp2016/
https://www.jilp.org/cbp2016/

Assignment 1

= Implement with Pin in C++

— 2-level Local Brach predictor
— 2-level Global Branch Predictor (gshare)
- Tournament Branch Predictor

= BTB not required

= Correctness testing is your responsibility

— Come up with simple micro-benchmarks with branch
outcomes that you can reason about

— Run them through your predictors and verify outcomes

Due: Monday, Feb 19, 4pm

Inf3 Computer Architecture - 2017-2018

25

Handling Hazards

Structural hazards

— Stalling: pipeline interlock
— Code scheduling

Data hazards

— Stalling: pipeline interlock
- Forwarding
- Load delay
» Stalling: pipeline interlock
» Code scheduling: fill the load delay slot

Control Hazards

— Early branch resolution

— Stalling: flushing the pipeline
— Delayed branch

— Predict non taken (or taken)
— Static branch prediction

— Dynamic branch prediction

Inf3 Computer Architecture - 2017-2018

26

Hazards caused by multi-cycle operations @

T - w8

Dala memory | T Rey

IF s . RF . EX DF DS

; i O~

: , : .

2 =
Instruction mermory Reg | 2 é

H . ' /

; ; ; .~ |

Example of this in the MIPS R4000

= Notable feature:
pipelined memory accesses

Inf3 Computer Architecture - 2017-2018 27

Load-to-use latency in the MIPS R4000 @

A

lime {In tiock cyciss)

CCH1 ccz cC3 CC4 CC5 cCe oC7 cCs cCco CcC "0 CC 1
. \\
——— N T e 5
.D Rl nstruction mamory Reg lizl]-—;——— & memory. g

=) = - :
Instricrion 1 instrucfion mamory [~ Ren /;!}7—r Data memcry Reg
(L7

; | 3 = 5
Instruction 2 : Inctructicn rmemory Reg __[>;f' 7 Lata memory Hzg
P
ADDD RZ, RI : nsLruclion memory = Reg ,’g] 7 Dala memury Feg

2-cycle load delay slot

Inf3 Computer Architecture - 2017-2018 28

Impact of Empty Load-delay Slots on CPI

CPI

2.25

1.5

0.75 -

0

[l FP structural stalls
O FP result stalls

O Branch stalls

[l Load stalls

O Base CPI

T T T T
compress espresso li
Benchmark

ear

mdljdp

Bottom-line: CPI increase of 0.01 - 0.27 cycles

Inf3 Computer Architecture - 2017-2018

H&P 5/e
Fig. C.52

29

Multicycle Floating Point Operations

= Floating point operations take multiple cycles in EXE

= Example system: 1 int ALU, 1 FP/int multiplier, 1 FP adder, 1 FP/int
divider

EXE
int ALLU

——

EXE
FP/int
multiply

IF ID MEM WB

EXE
FP add

C——>

EXE
FP/int
divide

C——>

Inf3 Computer Architecture - 2017-2018 30

Generalizing Multicycle Operations

= |nstruction latency: cycles to wait for the result of an instruction

— Usually the number of cycles for the execution pipeline minus 1

- e.g. O cycles for integer ALU since no wait is necessary

= |Instruction initiation interval: time to wait to issue another
instruction of the same type

- Not equal to number of cycles, if multicycle operation is pipelined or
partially pipelined
= Examples:

- Integer ALU:
1 EXE cycle — latency = O; initiation interval = 1

- FP add, fully pipelined:
4 EXE cycles — latency = 3; initiation interval = 1

- FP divide, not pipelined:
25 EXE cycles — latency = 24; initiation interval = 25

Inf3 Computer Architecture - 2017-2018 31

Multicycle Functional Units: MIPS R4000

ALU: 64-bit, fully pipelined
= Barrel shifter: 32-bit, 1-cycle pipeline stall on 64-bit shifts

— This design was adopted to save chip area

= Integer Multiplier: not pipelined,
10-cycle (32-bit) or 20-cycle (64-bit) latency

= Integer Divider: not pipelined,
69-cycle (32-bit) or 133-cycle (64-bit) latency

= FP adder/multiplier: fully pipelined
= FP divider: 23- (sp) to 36-cycle (dp) latency

Inf3 Computer Architecture - 2017-2018 32

Multicyle Operations: Handling Hazards

Structural hazards can occur when functional unit not fully pipelined

(initiation interval > 1) — need to add interlocking

— Stalls for hazards become longer and more frequent

Possibly more than one register write per cycle — either add ports to

register file or treat conflict as a hazard and stall

Possible hazards between integer and FP instructions — use separate

register files

WAW hazards are possible — stall second instruction /|

4
i

or prevent first instruction from writing /T

‘48

Inf3 Computer Architecture - 2017-2018

-~
"'

il MTM | wn l

33

Loop Example

for (i=1000; i>0; i--)
X[i] = X[i] + s

= Straightforward code and schedule:

- Assume F'2 contains the value of s

- Load latency equals 1
- FP ALU latency 3 to another FP ALU and 2 to a store

loop: L.D
stall
ADD.D
stall
stall
S.D
ADDUI
stall
BNE
stall

FO,0(R1) ;F0=array element
;add depends on 1d

F4,F0,F2 ymain computation
;st depends on add

F4,0(R1) ;store result

R1,R1,-8 ;decrement index
;bne depends on add

R1,R2,lo0p ;next iteration
;branch delay slot

Inf3 Computer Architecture - 2017-2018

Cycle

=

O 0O Jd oo U b W DN

10

34

Iteration Scheduling

= Execution time of straightforward code: 10 cycles/element

= Smart compiler (or human &) schedule:

loop: L.D FO,0(R1) ;FO=array element
DADDUI R1,R1l,-8 ;decrement index
ADD.D F4,F0,F2 ymain computation
stall ;st depends on add
BNE R1,R2,lo0p ;next iteration
S.D F4,8 (R1) ;store result

= Immediate offset of store was changed after reordering

= Execution time of scheduled code:
6 cycles/element — Speedup=1.7

= Of the 6 cycles, 3 are for actual computation (l.d, add.d, s.d),
2 are loop overhead (addi, bne), and 1 is a stall

Inf3 Computer Architecture - 2017-2018

Cycle

o O d W

35

