
Branch Prediction
▪ Static Branch Prediction
▪ Dynamic Branch Prediction
▪ Note: Assignment 1: due Feb 19th.

1

Inf3 Computer Architecture - 2017-2018

Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or
likely to be not taken.
– How?

When is a branch likely to be taken?

When is a branch likely to be NOT taken?

2

int gtz=0;
int i = 0;

while (i < 100) {
 x = a[i];
 if (x == 0)
 continue;
 gtz++;
}

Inf3 Computer Architecture - 2017-2018

Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or
likely to be not taken.

▪ Decision is based on analysis or profile information
– 90% of backward-going branches are taken
– 50% of forward-going branches are not taken
– BTFN: “backwards taken, forwards not-taken”
– Used in ARC 600 and ARM 11

▪ Decision is encoded in the branch instructions themselves
– Uses 1 bit: 0 => not likely to branch, 1=> likely to branch

▪ Prediction may be wrong!
– Must kill instructions in the pipeline when a bad decision is made
– Speculatively issued instructions must not change processor

state

3

Inf3 Computer Architecture - 2017-2018 4

Dynamic Branch Prediction

▪ Monitor branch behavior and learn
– Key assumption: past behavior indicative of future behavior

▪ Predict the present (current branch) using learned history

▪ Identify individual branches by their PC or dynamic branch
history

▪ Predict:
– Outcome: taken or not taken

– Target: address of instruction to branch to

▪ Check actual outcome and update the history

▪ Squash incorrectly fetched instructions

Inf3 Computer Architecture - 2017-2018 5

Simplest dynamic predictor: 1-bit Prediction

▪ 1 bit indicating Taken (1) or Not Taken (0)

▪ Branch prediction buffers:
– Match branch PC during IF or ID stages

▪ Incurs at least 2 mis-predictions per loop

Branch PC
0x135c8
0x147e0

…

Outcome
0
1

…

…
0x135c4: add r1,r2,r3
0x135c8: bne r1,r0,n
…

while (i < 100) {
 x = a[i];
 if (x == 0)
 continue;
 gtz++;
}Problem: “unstable” behavior

Inf3 Computer Architecture - 2017-2018 6

2-bit (Bimodal) Branch Prediction

▪ Idea: add hysteresis
– Prevent spurious events from affecting the most likely branch outcome

▪ 2-bit saturating counter:
– 00: do not take
– 01: do not take
– 10: take
– 11: take

while (i < 100) {
 x = a[i];
 if (x == 0)
 continue;
 gtz++;
}

Branch PC
0x135c8
0x147e0

…

Outcome
10
11
…

Inf3 Computer Architecture - 2017-2018 7

2-bit (Bimodal) Branch Prediction

▪ Predictor states:

▪ Learns biased branches
▪ N-bit predictor:

– Increment on Taken outcome and decrement on Not Taken outcome
– If counter>(2n-1)/2 then take, otherwise do not take
– Takes longer to learn, but sticks longer to the prediction

Predict taken
(10)

Predict not taken
(01)

Taken

Taken

Predict taken
(11)

Predict not taken
(00)

Not taken

Taken

Not taken
Taken

Not taken

Not taken

Inf3 Computer Architecture - 2017-2018 8

Example of 2-bit (Bimodal) Branch Prediction

▪ Nested loop:

▪ 1st outer loop execution:
– 00 → predict not taken; actually taken → update to 01 (misprediction)
– 01 → predict not taken; actually taken → update to 10 (misprediction)
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10 (misprediction)

Loop1: …
 …
Loop2: …
 bne r1,r0,loop2
 …
 bne r2,r0,loop1

Inf3 Computer Architecture - 2017-2018 9

Example Continued

▪ 2nd outer loop execution onwards:
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10 (misprediction)

▪ In practice misprediction rates for 2-bit predictors with 4096 entries in
the buffer range from 1% to 18% (higher for integer applications than for
fp applications)

▪ Bottom-line: 2-bit branch predictors work very well for loop-intensive
applications

– n-bit predictors (n>2) are not much better
– Larger buffer sizes do not perform much better

Inf3 Computer Architecture - 2017-2018

Bimodal (2-bit) predictor logic

10

Targets

BTB

PC Tags
(optional)

Hit? Taken?

PC + 4

Next
Fetch
Address

0

1

P
H
T

0 1

Target

Inf3 Computer Architecture - 2017-2018

Correlating Predictors

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: branches are correlated!
▪ Local: A branch outcome maybe correlated

with past outcomes (multiple outcomes or
history, not just the most recent) of the same
branch

▪ Global: A branch outcome maybe correlated
with past outcomes of other branches

11

Inf3 Computer Architecture - 2017-2018

Correlating Predictors (Local)

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: outcomes of same branch correlated!
▪

▪ Branch outcomes: 1,1,1,0, 1,1,1,0 1,1,1,0….

12

while (i < 4) {
 x = a[i];
 if (x == 0)
 continue;
 gtz++;
}

Idea: exploit recent history of same branch in prediction

Inf3 Computer Architecture - 2017-2018

Correlating Predictors (Global)

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: Different branches maybe correlated!

13

if (a == 2)
 a = 0;
if (b == 2)
 b = 0;
if (a != b) {
 …}

If both branches are taken,
the last branch definitely not taken

char s1 = “Bob”
...
if (s1 != NULL)
 reverse_str(s1);

reverse_str(char *s) {
 if (s1 == NULL)
 return;
 ...

s1 definitely not Null  
in this calling context

Inf3 Computer Architecture - 2017-2018

Correlating Predictors (Global)

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: Different branches maybe correlated!

14

if (a == 2)
 a = 0;
if (b == 2)
 b = 0;
if (a != b) {
 …}

char s1 = “Bob”
...
if (s1 != NULL)
 reverse_str(s1);

reverse_str(char *s) {
 if (s1 == NULL)
 return;
 ...

Idea: exploit recent history of other branches in prediction

Inf3 Computer Architecture - 2017-2018

Global Two-Level (or Correlating) Predictor

▪ Prediction depends on the context of the branch
▪ Context: history (T/NT) of the last N branches

– First level of the predictor
– Implemented as a shift register

▪ Prediction: 2-bit saturating counters
– Indexed with the “global” history
– Second level of the predictor

15

1 1 0 1. . .

00
10
00

01

…
Global History  
Register GHR)

000 .. 0
000 .. 1

11
…

110 .. 1

111 .. 1

Pattern History
Table (PHT)

Last resolved
branch

Inf3 Computer Architecture - 2017-2018

Dynamic Predictor Performance Comparison

2-level predictor improves accuracy by >4%
16

2-level correlating
predictor with a
15-bit global history

Inf3 Computer Architecture - 2017-2018

Does 4% accuracy improvement matter?

17

▪ Assume branches resolve in stage 10
– Reasonable for a modern high-frequency processor

▪ 20% of instructions are branches
▪ Correctly-predicted branches have a 0-cycle penalty (CPI=1)
▪ 2-bit predictor: 92% accuracy
▪ 2-level predictor: 96% accuracy

2-bit predictor:
CPI = 0.8 + 0.2 * (10*0.08 + 1*0.92) = 1.114

2-level predictor
CPI = 0.8 + 0.2 * (10*0.04 + 1*0.96) = 1.072

Speedup(2-level over 2-bit): 4%

Inf3 Computer Architecture - 2017-2018 18

Branch Target Buffers (BTB)

▪ Branch predictors tell whether the branch will be taken or not, but they
say nothing about the target of the branch

▪ To resolve a branch early we need to know both the outcome and the
target

▪ Solution: store the likely target of the branch in a table (cache) indexed
by the branch PC → BTB

▪ Usually BTB is accessed in the IF stage and the branch predictor is
accessed later in the ID stage

Inf3 Computer Architecture - 2017-2018

Branch Prediction Logic of global 2-level predictor

Source: Onur Mutlu, CMU

19

0

1

Inf3 Computer Architecture - 2017-2018

Bimodal and Global 2-level

▪ Bimodal (2-bit) Branch Predictor
+ Good for biased branches
+ No interference
- Cannot discern patterns

▪ Global 2-level Branch Predictor
+ Leverages correlated branches
+ Identifies patterns
- Cannot always take advantage of biased branches
- Interference

20

Inf3 Computer Architecture - 2017-2018

0

1

2

3

4

5

6

7

Interference in Global 2-level Predictors

21

1 0 1

Global History Register 1 1

0 1

1 1

0 1

1 1

1 0

1 1

0 1

Pattern History Table

• Branch A is always Not
Taken when GHR is 101

• Branch B is a loop with a
million iterations

• Branch A and Branch B
can interfere in entry 5
of the PHT

Biased branches pollute the PHT!!!!

Inf3 Computer Architecture - 2017-2018

Tournament Predictor - the best of multiple predictors

▪ Most branches are biased (e.g. 99% Taken)
▪ Filter the biased branches with a simple predictor

(e.g. Bimodal)
▪ Predict the hard branches with the Global 2-level

predictor
▪ Use a meta-predictor to chose a different

predictor
▪ The meta-predictor is a PHT of 2-bit saturating

counters

22

Inf3 Computer Architecture - 2017-2018

Tournament Predictor

23

Global 2-level
Predictor

Bimodal
 Predictor

Meta
 Predictor

PC + 4

Next
Fetch
Address

0

1Target
Address

from BTB

0

1

Taken?

PC

GHR

Inf3 Computer Architecture - 2017-2018

References

▪ Different solutions to the problem of interference
– Gshare – Use a hash function to index to the PHT (CAR

assignment uses this as the “global” predictor)
▪ What is the state of the art ?

– TAGE (Use multiple tagged PHTs for multiple history
lengths)

– Perceptron (Learn the correlations in the global history)
▪ Branch Prediction Championship

– https://www.jilp.org/cbp2016/

24

https://www.jilp.org/cbp2016/
https://www.jilp.org/cbp2016/

Inf3 Computer Architecture - 2017-2018

Assignment 1

▪ Implement with Pin in C++
– 2-level Local Brach predictor
– 2-level Global Branch Predictor (gshare)
– Tournament Branch Predictor

▪ BTB not required

▪ Correctness testing is your responsibility
– Come up with simple micro-benchmarks with branch

outcomes that you can reason about
– Run them through your predictors and verify outcomes

25

Due: Monday, Feb 19, 4pm

Inf3 Computer Architecture - 2017-2018

Handling Hazards

▪ Structural hazards
– Stalling: pipeline interlock
– Code scheduling

▪ Data hazards
– Stalling: pipeline interlock
– Forwarding
– Load delay

▪ Stalling: pipeline interlock
▪ Code scheduling: fill the load delay slot

▪ Control Hazards
– Early branch resolution
– Stalling: flushing the pipeline
– Delayed branch
– Predict non taken (or taken)
– Static branch prediction
– Dynamic branch prediction

26

Inf3 Computer Architecture - 2017-2018

Hazards caused by multi-cycle operations

Example of this in the MIPS R4000
▪ Notable feature:  

pipelined memory accesses

27

Inf3 Computer Architecture - 2017-2018

Load-to-use latency in the MIPS R4000

2-cycle load delay slot

28

Inf3 Computer Architecture - 2017-2018 29

Impact of Empty Load-delay Slots on CPI

Bottom-line: CPI increase of 0.01 – 0.27 cycles

H&P 5/e
Fig. C.52

C
PI

0

0.75

1.5

2.25

3

Benchmark
compress espresso li ear mdljdp

Base CPI
Load stalls
Branch stalls
FP result stalls
FP structural stalls

Inf3 Computer Architecture - 2017-2018 30

Multicycle Floating Point Operations

▪ Floating point operations take multiple cycles in EXE
▪ Example system: 1 int ALU, 1 FP/int multiplier, 1 FP adder, 1 FP/int

divider

MEM WBIDIF

EXE
int ALU

EXE
FP/int

multiply

EXE
FP add

EXE
FP/int
divide

Inf3 Computer Architecture - 2017-2018 31

Generalizing Multicycle Operations

▪ Instruction latency: cycles to wait for the result of an instruction
– Usually the number of cycles for the execution pipeline minus 1
– e.g. 0 cycles for integer ALU since no wait is necessary

▪ Instruction initiation interval: time to wait to issue another
instruction of the same type
– Not equal to number of cycles, if multicycle operation is pipelined or

partially pipelined
▪ Examples:

– Integer ALU:  
1 EXE cycle → latency = 0; initiation interval = 1

– FP add, fully pipelined:  
4 EXE cycles → latency = 3; initiation interval = 1

– FP divide, not pipelined:  
25 EXE cycles → latency = 24; initiation interval = 25

Inf3 Computer Architecture - 2017-2018

Multicycle Functional Units: MIPS R4000

▪ ALU: 64-bit, fully pipelined

▪ Barrel shifter: 32-bit, 1-cycle pipeline stall on 64-bit shifts
– This design was adopted to save chip area

▪ Integer Multiplier: not pipelined,  
10-cycle (32-bit) or 20-cycle (64-bit) latency

▪ Integer Divider: not pipelined,  
69-cycle (32-bit) or 133-cycle (64-bit) latency

▪ FP adder/multiplier: fully pipelined

▪ FP divider: 23- (sp) to 36-cycle (dp) latency

32

Inf3 Computer Architecture - 2017-2018 33

Multicyle Operations: Handling Hazards

▪ Structural hazards can occur when functional unit not fully pipelined
(initiation interval > 1) → need to add interlocking
– Stalls for hazards become longer and more frequent

▪ Possibly more than one register write per cycle → either add ports to
register file or treat conflict as a hazard and stall

▪ Possible hazards between integer and FP instructions → use separate
register files

▪ WAW hazards are possible → stall second instruction  
or prevent first instruction from writing

Inf3 Computer Architecture - 2017-2018 34

for (i=1000; i>0; i--)
x[i] = x[i] + s

loop: L.D F0,0(R1) ;F0=array element
 stall ;add depends on ld
 ADD.D F4,F0,F2 ;main computation
 stall ;st depends on add
 stall
 S.D F4,0(R1) ;store result
 ADDUI R1,R1,-8 ;decrement index
 stall ;bne depends on add
 BNE R1,R2,loop ;next iteration
 stall ;branch delay slot

Cycle

1

2

3

4

5

6

7

8

9

10

Loop Example

▪ Straightforward code and schedule:
– Assume F2 contains the value of s
– Load latency equals 1
– FP ALU latency 3 to another FP ALU and 2 to a store

Inf3 Computer Architecture - 2017-2018 35

▪ Execution time of straightforward code: 10 cycles/element

▪ Smart compiler (or human ☺) schedule:

▪ Immediate offset of store was changed after reordering
▪ Execution time of scheduled code:  

6 cycles/element → Speedup=1.7

▪ Of the 6 cycles, 3 are for actual computation (l.d, add.d, s.d),  
2 are loop overhead (addi, bne), and 1 is a stall

loop: L.D F0,0(R1) ;F0=array element
 DADDUI R1,R1,-8 ;decrement index
 ADD.D F4,F0,F2 ;main computation
 stall ;st depends on add
 BNE R1,R2,loop ;next iteration
 S.D F4,8(R1) ;store result

Cycle
1
2
3
4
5
6

Iteration Scheduling

