
Branch Prediction
▪ Static Branch Prediction
▪ Dynamic Branch Prediction
▪ Note: Assignment 1: due Feb 19th.
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Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or 
likely to be not taken.
– How?

When is a branch likely to be taken?

When is a branch likely to be NOT taken?
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int gtz=0; 
int i = 0; 

while (i < 100) { 
  x = a[i]; 
  if (x == 0) 
    continue; 
  gtz++;  
}
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Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or 
likely to be not taken.

▪ Decision is based on analysis or profile information
– 90% of backward-going branches are taken
– 50% of forward-going branches are not taken
– BTFN: “backwards taken, forwards not-taken”
– Used in ARC 600 and ARM 11

▪ Decision is encoded in the branch instructions themselves
– Uses 1 bit:  0 => not likely to branch, 1=> likely to branch

▪ Prediction may be wrong!
– Must kill instructions in the pipeline when a bad decision is made
– Speculatively issued instructions must not change processor 

state
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Dynamic Branch Prediction

▪ Monitor branch behavior and learn
– Key assumption: past behavior indicative of future behavior

▪ Predict the present (current branch) using learned history

▪ Identify individual branches by their PC or dynamic branch 
history

▪ Predict:
– Outcome: taken or not taken

– Target: address of instruction to branch to

▪ Check actual outcome and update the history

▪ Squash incorrectly fetched instructions
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Simplest dynamic predictor: 1-bit Prediction

▪ 1 bit indicating Taken (1) or Not Taken (0)

▪ Branch prediction buffers:
– Match branch PC during IF or ID stages

▪ Incurs at least 2 mis-predictions per loop

Branch PC 
0x135c8 
0x147e0 

…

Outcome 
0 
1 

…

… 
0x135c4: add r1,r2,r3 
0x135c8: bne r1,r0,n 
…

while (i < 100) { 
  x = a[i]; 
  if (x == 0) 
    continue; 
  gtz++;  
}Problem: “unstable” behavior
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2-bit (Bimodal) Branch Prediction

▪ Idea: add hysteresis
– Prevent spurious events from affecting the most likely branch outcome

▪ 2-bit saturating counter:
– 00: do not take
– 01: do not take
– 10: take
– 11: take

while (i < 100) { 
  x = a[i]; 
  if (x == 0) 
    continue; 
  gtz++;  
}

Branch PC 
0x135c8 
0x147e0 

…

Outcome 
10 
11 
…
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2-bit (Bimodal) Branch Prediction

▪ Predictor states:

▪ Learns biased branches
▪ N-bit predictor:

– Increment on Taken outcome and decrement on Not Taken outcome
– If counter>(2n-1)/2 then take, otherwise do not take
– Takes longer to learn, but sticks longer to the prediction

Predict taken 
(10)

Predict not taken 
(01)

Taken

Taken

Predict taken 
(11)

Predict not taken 
(00)

Not taken

Taken

Not taken
Taken

Not taken

Not taken
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Example of 2-bit (Bimodal) Branch Prediction

▪ Nested loop:

▪ 1st outer loop execution:
– 00 → predict not taken; actually taken → update to 01  (misprediction)
– 01 → predict not taken; actually taken → update to 10  (misprediction)
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10  (misprediction)

Loop1: … 
       … 
Loop2: … 
       bne r1,r0,loop2 
       … 
       bne r2,r0,loop1
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Example Continued

▪ 2nd outer loop execution onwards:
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10  (misprediction)

▪ In practice misprediction rates for 2-bit predictors with 4096 entries in 
the buffer range from 1% to 18% (higher for integer applications than for 
fp applications)

▪ Bottom-line: 2-bit branch predictors work very well for loop-intensive 
applications 

– n-bit predictors (n>2) are not much better 
– Larger buffer sizes do not perform much better
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Bimodal (2-bit) predictor logic
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Targets

BTB

PC Tags 
(optional)

Hit? Taken?

PC + 4

Next 
Fetch 
Address

0 

1

P 
H 
T

0 1

Target
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Correlating Predictors

▪ 1- and 2-bit predictors exploit most recent 
history of the current branch

▪ Realization: branches are correlated!
▪ Local: A branch outcome maybe correlated 

with past outcomes (multiple outcomes or 
history, not just the most recent) of the same 
branch

▪ Global: A branch outcome maybe correlated 
with past outcomes of other branches
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Correlating Predictors (Local)

▪ 1- and 2-bit predictors exploit most recent 
history of the current branch

▪ Realization: outcomes of same branch correlated! 
▪  

▪ Branch outcomes: 1,1,1,0,  1,1,1,0  1,1,1,0…. 
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while (i < 4) { 
  x = a[i]; 
  if (x == 0) 
    continue; 
  gtz++;  
}

Idea: exploit recent history of  same branch in prediction 
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Correlating Predictors (Global)

▪ 1- and 2-bit predictors exploit most recent 
history of the current branch

▪ Realization: Different branches maybe correlated!
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if (a == 2) 
    a = 0; 
if (b == 2) 
    b = 0; 
if (a != b) { 
    …}

If  both branches are taken, 
the last branch definitely not taken

char s1 = “Bob” 
... 
if (s1 != NULL) 
  reverse_str(s1); 

reverse_str(char *s) { 
  if (s1 == NULL)  
    return; 
 ...

s1  definitely not Null  
in this calling context
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Correlating Predictors (Global)

▪ 1- and 2-bit predictors exploit most recent 
history of the current branch

▪ Realization: Different branches maybe correlated!
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if (a == 2) 
    a = 0; 
if (b == 2) 
    b = 0; 
if (a != b) { 
    …}

char s1 = “Bob” 
... 
if (s1 != NULL) 
  reverse_str(s1); 

reverse_str(char *s) { 
  if (s1 == NULL)  
    return; 
 ...

Idea: exploit recent history of  other branches in prediction 
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Global Two-Level (or Correlating) Predictor

▪ Prediction depends on the context of the branch
▪ Context: history (T/NT) of the last N branches

– First level of the predictor
– Implemented as a shift register

▪ Prediction: 2-bit saturating counters 
– Indexed with the “global” history
– Second level of the predictor
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1 1 0 1. . .

00
10
00

01

…
Global History  
Register GHR)

000 .. 0
000 .. 1

11
…

110 .. 1

111 .. 1

Pattern History  
Table (PHT)

Last resolved 
branch
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Dynamic Predictor Performance Comparison

2-level predictor improves accuracy by >4%
16

2-level correlating 
predictor with a  
15-bit global history
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Does 4% accuracy improvement matter?
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▪ Assume branches resolve in stage 10
– Reasonable for a modern high-frequency processor

▪ 20% of instructions are branches
▪ Correctly-predicted branches have a 0-cycle penalty (CPI=1)
▪ 2-bit predictor: 92% accuracy
▪ 2-level predictor: 96% accuracy

2-bit predictor:
CPI = 0.8 + 0.2 * (10*0.08 + 1*0.92) = 1.114

2-level predictor
CPI = 0.8 + 0.2 * (10*0.04 + 1*0.96) = 1.072

Speedup(2-level over 2-bit): 4%
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Branch Target Buffers (BTB)

▪ Branch predictors tell whether the branch will be taken or not, but they 
say nothing about the target of the branch

▪ To resolve a branch early we need to know both the outcome and the 
target

▪ Solution: store the likely target of the branch in a table (cache) indexed 
by the branch PC → BTB

▪ Usually BTB is accessed in the IF stage and the branch predictor is 
accessed later in the ID stage
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Branch Prediction Logic of global 2-level predictor

Source: Onur Mutlu, CMU
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Bimodal and Global 2-level

▪ Bimodal (2-bit) Branch Predictor
+ Good for biased branches
+ No interference
- Cannot discern patterns

▪ Global 2-level Branch Predictor
+ Leverages correlated branches
+ Identifies patterns
- Cannot always take advantage of biased branches
- Interference
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0

1

2
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Interference in Global 2-level Predictors
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1 0 1

Global History Register 1 1

0 1

1 1

0 1

1 1

1 0

1 1

0 1

Pattern History Table

• Branch A is always Not 
Taken when GHR is 101 

• Branch B is a loop with a 
million iterations 

• Branch A and Branch B 
can interfere in entry 5 
of  the PHT 

Biased branches pollute the PHT!!!!
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Tournament Predictor - the best of multiple predictors

▪ Most branches are biased (e.g. 99% Taken)
▪ Filter the biased branches with a simple predictor 

(e.g. Bimodal)
▪ Predict the hard branches with the Global 2-level 

predictor
▪ Use a meta-predictor to chose a different 

predictor
▪ The meta-predictor is a PHT of 2-bit saturating 

counters 

22
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Tournament Predictor

23

Global 2-level 
Predictor

Bimodal 
 Predictor

Meta 
 Predictor

PC + 4

Next 
Fetch 
Address

0 

1Target  
Address 

from BTB

0 

1

Taken?

PC

GHR
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References

▪ Different solutions to the problem of interference
– Gshare – Use a hash function to index to the PHT (CAR 

assignment uses this as the “global” predictor)
▪ What is the state of the art ?

– TAGE (Use multiple tagged PHTs for multiple history 
lengths)

– Perceptron (Learn the correlations in the global history)
▪ Branch Prediction Championship

– https://www.jilp.org/cbp2016/
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https://www.jilp.org/cbp2016/
https://www.jilp.org/cbp2016/
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Assignment 1

▪ Implement with Pin in C++
– 2-level Local Brach predictor
– 2-level Global Branch Predictor (gshare)
– Tournament Branch Predictor

▪ BTB not required

▪ Correctness testing is your responsibility
– Come up with simple micro-benchmarks with branch 

outcomes that you can reason about
– Run them through your predictors and verify outcomes

25

Due: Monday, Feb 19, 4pm
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Handling Hazards

▪ Structural hazards
– Stalling: pipeline interlock
– Code scheduling

▪ Data hazards
– Stalling: pipeline interlock
– Forwarding
– Load delay

▪ Stalling: pipeline interlock
▪ Code scheduling: fill the load delay slot

▪ Control Hazards
– Early branch resolution
– Stalling: flushing the pipeline
– Delayed branch
– Predict non taken (or taken)
– Static branch prediction
– Dynamic branch prediction

26
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Hazards caused by multi-cycle operations

Example of this in the MIPS R4000
▪ Notable feature:  

pipelined memory accesses

27
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Load-to-use latency in the MIPS R4000

2-cycle load delay slot

28



Inf3 Computer Architecture - 2017-2018 29

Impact of Empty Load-delay Slots on CPI

Bottom-line: CPI increase of 0.01 – 0.27 cycles

H&P 5/e 
Fig. C.52

C
PI

0

0.75

1.5

2.25

3

Benchmark
compress espresso li ear mdljdp

Base CPI
Load stalls
Branch stalls
FP result stalls
FP structural stalls
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Multicycle Floating Point Operations

▪ Floating point operations take multiple cycles in EXE
▪ Example system: 1 int ALU, 1 FP/int multiplier, 1 FP adder, 1 FP/int 

divider

MEM WBIDIF

EXE 
int ALU

EXE 
FP/int 

multiply

EXE 
FP add

EXE 
FP/int 
divide
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Generalizing Multicycle Operations

▪ Instruction latency: cycles to wait for the result of an instruction
– Usually the number of cycles for the execution pipeline minus 1
– e.g. 0 cycles for integer ALU since no wait is necessary

▪ Instruction initiation interval: time to wait to issue another 
instruction of the same type
– Not equal to number of cycles, if multicycle operation is pipelined or 

partially pipelined
▪ Examples:

– Integer ALU:  
1 EXE cycle → latency = 0; initiation interval = 1

– FP add, fully pipelined:  
4 EXE cycles → latency = 3; initiation interval = 1

– FP divide, not pipelined:  
25 EXE cycles → latency = 24; initiation interval = 25
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Multicycle Functional Units: MIPS R4000

▪ ALU: 64-bit, fully pipelined

▪ Barrel shifter: 32-bit, 1-cycle pipeline stall on 64-bit shifts 
– This design was adopted to save chip area

▪ Integer Multiplier: not pipelined,  
10-cycle (32-bit) or 20-cycle (64-bit) latency

▪ Integer Divider: not pipelined,  
69-cycle (32-bit) or 133-cycle (64-bit) latency

▪ FP adder/multiplier: fully pipelined

▪ FP divider: 23- (sp) to 36-cycle (dp) latency

32
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Multicyle Operations: Handling Hazards

▪ Structural hazards can occur when functional unit not fully pipelined 
(initiation interval > 1) → need to add interlocking
– Stalls for hazards become longer and more frequent

▪ Possibly more than one register write per cycle → either add ports to 
register file or treat conflict as a hazard and stall

▪ Possible hazards between integer and FP instructions → use separate 
register files

▪ WAW hazards are possible → stall second instruction  
or prevent first instruction from writing
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for (i=1000; i>0; i--) 
x[i] = x[i] + s

loop: L.D    F0,0(R1)   ;F0=array element 
      stall             ;add depends on ld 
      ADD.D  F4,F0,F2   ;main computation 
      stall             ;st depends on add 
      stall 
      S.D    F4,0(R1)   ;store result 
      ADDUI  R1,R1,-8   ;decrement index 
      stall             ;bne depends on add 
      BNE    R1,R2,loop ;next iteration 
      stall             ;branch delay slot

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Loop Example

▪ Straightforward code and schedule:
– Assume F2 contains the value of s
– Load latency equals 1
– FP ALU latency 3 to another FP ALU and 2 to a store
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▪ Execution time of straightforward code: 10 cycles/element

▪ Smart compiler (or human ☺ ) schedule:

▪ Immediate offset of store was changed after reordering
▪ Execution time of scheduled code:  

6 cycles/element → Speedup=1.7

▪ Of the 6 cycles, 3 are for actual computation (l.d, add.d, s.d),  
2 are loop overhead (addi, bne), and 1 is a stall

loop: L.D    F0,0(R1)   ;F0=array element 
      DADDUI R1,R1,-8   ;decrement index 
      ADD.D  F4,F0,F2   ;main computation 
      stall             ;st depends on add 
      BNE    R1,R2,loop ;next iteration 
      S.D    F4,8(R1)   ;store result

Cycle 
1 
2 
3 
4 
5 
6

Iteration Scheduling


