Improving Performance: Pipelining

Phases of instruction execution

Memory
Memory General
registers
IF ID EXE MEM |— WB
IF Instruction Fetch (includes PC increment)

ID Instruction Decode + fetching values from general purpose registers
EXE Execute arithmetic/logic operations or address computation

MEM Memory access ot branch completion
WB Write Back results to general purpose registers (a.k.a. Commit)

Inf3 Computer Architecture - 2017-2018

Generalized Phases of Instruction Execution

= |nstruction Fetch
- InstructionRegister = MemRead (INST_MEM, PC)

= Decoding
- Generate datapath control signals

Note: INST MEM and
DATA_MEM may be
same or separate physical

memories
- Determine register operands

= QOperand Assembly
- Trivial for some ISAs, not for others
- E.g. select between literal or register operand; operand pre-scaling
- Sometimes considered to be part of the Decode phase
= Function Evaluation or Address Calculation (Execution)
- Add, subtract, shift, logical, etc.
- Address calculation is simply addition
= Memory Access (if required)
- Load: ReadData = MemRead(DATA_MEM, MemAddress, Size)
- Store: MemWrite (DATA_MEM, MemAddress, WriteData, Size)
= Completion

- Update processor state modified by this instruction
- Interrupts or exceptions may prevent state update from taking place

Inf3 Computer Architecture - 2017-2018 2

Instruction fetch

= Read from memory (typically, Instruction Cache) at address given by PC
= Increment PC, i.e. PC = PC + sizeof(instruction)

Instruction

PC

memory

A 4

Read Read
Address pgatg

Inf3 Computer Architecture - 2017-2018

MIPS R-type instruction format

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

A
|

Destination register for R-type format

add $1, $2, $3 special $2 $3 $1 add

sll $4, $5, 16 special $5 $4 16 sll

Inf3 Computer Architecture - 2017-2018 4

MIPS I-type instruction format

6 bits 5 bits 5 bits 16 bits

S——
%

Destination register for Load

1w $1, offset($2) lw $2 $1 address offset
beq $4, $5, .Labell beq $4 $5 |(PC - .Labell) >> 2
addi $1 I} $2 ’ -10 addi $2 $1 Oxfffeé

Inf3 Computer Architecture - 2017-2018 5

Reading Registers

Use source register fields to address the register file and read two registers
= Select the destination register address, according to the format

4 —p
>
Register File
Instruction
» Read Read "AddrO0 Data 0
Address pata
nst [20:16] _|Read Read
I_ “IAddr1 Data 1
>
lnst [15:11] > Write Addr
—p\Write Data
RegDst

Inf3 Computer Architecture - 2017-2018

Extracting the literal operand

Sign-extend the 16-bit literal field, for those instructions that have a literal

4 —p
>
Register File
Instruction
» Read Read "Addr0 Data0
Address pata
|nst [20:16] _|Read Read
I_ "|Addr1 Data1
>
Inst [15:11] > Write Addr
—>»Write Data
Fork the wire!
RegDst

) Verilog
inst [15:0] Sign =
"\ extend % lit = { {16{inst[15]}}, inst[15:0] }

Inf3 Computer Architecture - 2017-2018

Performing the Arithmetic

Perform arithmetic or logical operation on Read Data O and either Read Data 1 or the
sign-extended literal

4 —p
>
Register File
Instruction
memory inst [2521] kRead Read
» Read Read "Addr0 Data 0 .
Address pata
nst [20:16] _|Read Read N ALU
I_ "|Addr1 Data1 >
> ~>
fnst [15:11] > Write Addr
—p|\Write Data
RegDst

inst [15:0] Sign
"\ extend

Inf3 Computer Architecture - 2017-2018

Inside the ALU

AndOp
XorOp
OrOp

_—
e
—_——
—_
—_—
-

y

(] @— /
L » Zero /
A »A g /
Cout m

| /
» Result /

X
F ~— /
SubtractOp /

A 4
c

B[4:0]

LeftOp
SignedOp
ShiftOp

Inf3 Computer Architecture - 2017-2018 9

Computing Branch Displacements

Compute sum of PC and scaled, sign-extended literal displacement
The main ALU is used for evaluating the branch condition (BEQ, BNE)

4 —p |
Add >
R i @_ Add
PCsrc
Register File
Instruction
memory inst [2521] Read Read
> Egg Eess Read "Addr0 Data 0 .
Data
[nst [20:16] _|Read Read » m ALU
|_ "|Addr1 Data1 | u
> > X

Inst [15:11] » Write Addr

—p\Write Data

RegDst

inst [15:0] Sign
"\ extend

Inf3 Computer Architecture - 2017-2018

10

Accessing Memory - Loads & Stores

Load and Store instructions use the ALU result as the effective address
Store instructions use Read Data 1 as the store data

PC

4 —p '7
Add >
>) @_ Add
PCsrc
Register File
Instruction MemRd MemWr
memory inst [25:21] ‘Read Read ‘ | |
» Read Read "IAdddr0 Data 0 > Data Memory
Address Data » Address
Inst [20:16] _|Read Read > m ALU
I_ "|Addr1 Data 1 u > Read »(m
> . X data 1u
Inst [15:11] » Write Addr o x
_|Write
»Write Data " |data
LoadReg
RegDst
inst [15:0]

_ Sign
"\ extend

Inf3 Computer Architecture - 2017-2018

11

Controlling Instruction Execution

= Control signals driven by combinational logic, based on instruction opcode

4 —p m
| > u
Add i :@_
> @_ Add
LoadReg
\ MemWr
inst [31:26] | pecode MemRd
—| L PCsrc
logic ALUop D—
/ ALUsrc
egDst
Register File
Instruction
memory inst [25:21] Read Read
» Read Read "IAdddr0 Data 0 > ero Data Memory
Address Data » Address
fnst [20:16] _|Read Read :r_nﬂ ALU
L g Addr 1 Data 1 u » Read kr—
> m > X data 7
Inst [15:11] g » Write Addr o x
_|Write
—»>Write Data | "ldata
inst [5:0] @
"\ decode

inst [15:0] Sign
"\ extend

Inf3 Computer Architecture - 2017-2018 12

Putting it all together

IF DEC MEM WB

v

extend

I I I
I I I
I I I
i | 1
I I I
4 —» | ! I
Add L ! > I
! ! Add I
= @t -
1 LoadReg 1 1 1
1 \ MemWr : : :
|
jnst[31:26] |pecode gngd t t I
[Src

1 logic ! 1 1
l 9 [ALuop l 1 |
1 / ALUsrc 1 1 |
1 egDst | 1 1
! Register File ‘ 1 1
Instruction | : : :

| .
memory I inst [25:21] =Read Read | - |
» Read Read |! AddrO Data 0 I > L ero Data Memory I
Address Data ; »|Address 1
1 [nst [20:16] |Read Read | ‘r_nﬂ ALU ;
| |_ "|Addr1 Datat If | | u H» Read !
: > m I data I
| fnst[15:11] | U » Write Addr I 1
1 X I \Write 1
| —»>Write Data I | “|data 1
1 Inst [5:0] 1 ~ ALU I
I I “\ decode 1 I
1 I | I
I 1 T 1
1 i : . 1 1 1
I inst [15:0] Sign ; :
1 I 1

Inf3 Computer Architecture - 2017-2018 13

Motivating Pipelined Instruction Execution

ity
ALy
v
- ’
< -
» -
& -
- b
~
2
Bn ¥

Phases of Instruction Execution

Inf3 Computer Architecture - 2017-2018

14

Pipelined Instruction Execution

Phases of Instruction Execution

Decode

Execute

Inf3 Computer Architecture - 2017-2018

15

Pipelined Instruction Execution

Phases of Instruction Execution

Decode Execute
A A A
clock | | |

Problem: need a way to separate instruction state
between pipeline stages

Solution: clocked pipeline latches (registers)
* Operands (e.g., register values)
* Intermediate values (e.g., 1d/st address)
* Control signals

Inf3 Computer Architecture - 2017-2018 16

CPU Pipeline Structure

IF

DEC EX MEM

Decode

IogiC/

|
|
|
|
|
|
|
14 —
! Add >
1 _ PC+4 PC+4 » Add Jbre
1 << 2
|
1 [31:26]
: Branch
! zero decision
|
1 Register File
| Instruction
memory [25:21] JRead Read .
PC H»Read Read_,)| "Addr0 Data0 [> Data Memory
Address Datq A\
> Address
[20:16] |Read Read |, o A
"|Addr 1 Data 1 "l u Read
—>| X
»Write Data data
_ Write
—»|\rite Addr > 'Pata
[15:0]

[15:11]

~(Sign
“A_extend "

»

\ 4

\ 4

xcg |
v

»
»

v

Inf3 Computer Architecture - 2017-2018

17

Representing a sequence of instructions

= Space-time diagram of pipeline

= Think of each instruction as a time-shifted pipeline

| c1 | c2 | c3 | c4 c5 | cb | c’ | c8 | c9 | c10
| | | | | |

Instruction 1 IF

. F Mem Reg

Instruction 2 eg Mem Reg

Instruction 3 IF lT_;HT_;I Reg
Instruction 4 IF IT_;HL;I Reg
Instruction 5 IF lL;I@IT—/‘_I Reg

Inf3 Computer Architecture - 2017-2018 18

Information flow constraints

= [nformation from one instruction to any successor must
always move from left to right

| c1 | c2 | c3 | c4 | c5 | cb | c/ | c8 | c9 | c10
| | | | | |

_r_1
*

Inf3 Computer Architecture - 2017-2018 19

Another way to represent pipeline timing

= A similar, and slightly simpler, way to represent pipeline timing:
— Clock cycles progress left to right

— Instructions progress top to bottom

— Time at which each instruction is present in each pipeline stage is
shown by labelling appropriate cell with pipeline name

Instruction \ cycle 1 2 3 4 5 6 7 8 9
instruction 1 IF DEC EX MEM wB
instruction 2 IF DEC EX MEM wB
instruction 3 IF DEC EX MEM wB
instruction 4 IF DEC EX MEM wB
instruction 5 IF DEC EX MEM wB

Inf3 Computer Architecture - 2017-2018 20

Implementation Issues: Pipeline balance

= Each pipeline stage is a combinational logic network
- Registered inputs and outputs
- Longest circuit delay through all stages determines clock period

D Q

5 b Q

SHyaliie 9 Idgal_ly, all delays through every

— Stage pipeline stage are identical

— Logic

b a In practice this is hard to achieve
b Q —— — P
clk1 clk?2

+ | * Clock tree
clock +

Inf3 Computer Architecture - 2017-2018 21

Pipeline Hazards

= Hazards are pipeline events that restrict the pipeline flow

= They occur in circumstances where two or more activities cannot proceed

in parallel

= There are three types of hazard:

- Structural Hazards
» Arise from resource conflicts, when a set of actions have to be performed sequentially

because there is not sufficient resource to operate in parallel

- Data Hazards
= Occur when one instruction depends on the result of a previous instruction, and that
result is not yet available. These hazards are exposed by the overlapped execution of
instructions in a pipeline
- Control Hazards

» These arise from the pipelining of branch instructions, and other activities that change

the PC.

Inf3 Computer Architecture - 2017-2018 22

Structural Hazards

= Multi-cycle operations

= Memory or register file port restrictions

Example structural hazard caused by having only one memory port

Instruction \ cycle 1 2 3 4 5 6 7 8 9 10
w $1,($2) IF DEC EX MEM wB
instruction 2 IF DEC EX MEM wB
instruction 3 IF DEC EX MEM wB
instruction 4 IF DEC EX MEM wB
instruction 5 IF DEC EX MEM wB

Effect is to STALL instruction 4, delaying its entry to IF by one cycle

Instruction \ cycle 1 2 3 4 5 6 7 8 9 10
w $1,($2) IF DEC EX MEM WB
instruction 2 IF DEC EX MEM wB
instruction 3 IF DEC EX MEM WB
instruction 4 (IF IF DEC EX MEM WB
S— y N
instruction 5 IF DEC EX MEM wB

Inf3 Computer Architecture - 2017-2018

23

Data Hazards

= Overlapped execution of instructions means information may be required
before it is available.

| c1 | c2 | c3 | c4 | c5 | c6 | c/ | c8 | c9 | c10
|

Reg

XOR R10, R11

Inf3 Computer Architecture - 2017-2018 24

Data hazards lead to pipeline stalls

= SUB instruction must wait until R1 has been written to register file

= All subsequent instructions are similarly delayed

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, r7

OR R8, rl, R9

XOR R10, R1l, R11

| c1 | c2 | c3 | c4 | cd | cb | c/ | c8 | c9 | c10
| | | | | |
IF Reg .m Mem Reg
IF yfm STALL = = = Reg
Mem ;eg
Mem Reg
IF Reg .M Mem

Inf3 Computer Architecture - 2017-2018

25

Minimising data hazards by data-forwarding

= Key idea is to bypass the register file and forward information, as soon as

it becomes available within the pipeline, to the place it is needed.

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, r7

OR R8, rl, R9

XOR R10, R1l, R11

| c1

| c2

| c3 | c4 | c5 | c6 | c/ | c8

| c10

Inf3 Computer Architecture - 2017-2018

Mem

Reg

26

CPU pipeline showing forwarding paths

IF DEC EX MEM WB

%)

I
1
1
1
I
1
1
. . @
I
o Add ey PC+4 i@» bPC
! _ Dependency
' [31:26] checks
! Branch
1 Zero decision
1
| - Register File >
| Instruction m

memory [25:21] J|Read Read _-t X

—»> PC H»Read Read_,| "laddr0 Dpatao ™ i g Data Memory
Address Datq T > Address
: [20:16] _|Read Read | NI
”|Addr 1 Data 1 -
: - - " F\;ieaatg > m
1 »Write Data > % x M
1 —t)> _ Write i
: —>Write Addr — | " Tiata
: [15:0] _(~ Sign q 6, ([ALU
" “_extend 77\ decode
I [15:11] - -
L > =LJ 1 —‘
. . 1 J 1
Also forwarding through the Reg File i i

(no new datapath needed)

Inf3 Computer Architecture - 2017-2018 27

Data hazards requiring a stall

= Hazards involving the use of a Load result usually require a stall, even if
forwarding is implemented

| c1 | c2 | c3 | c4 | c5 | c6 | c/ | c8 | c9 | c10
|

LW (R2) IE
SUB R4, R5
AND R6, r7 IF [|

OR R8, rl, R9

XOR R10, R1l, R11 Mem Reg

Inf3 Computer Architecture - 2017-2018 28

Code scheduling to avoid stalls (before)

= Hazards involving the use of a Load may be avoided by reordering the
code

c1 c c3 c4 c5 c6 c’ c8 c9 c10
I | | | | | | | I

2 |
| | | |
IW R, 2(R2) IF S .m Mem| 1 Reg

*

i R
LW R3, 4(R1) IE _ITE;I

*

0..A

“ ADD R4, R4, R3 F | Mo mmeiReg[fummm F Mem[| Reg

A
ADD R1, R1, 4 IF m = m = Reg .w Mem Reg:

SUB R9, R9, 1 IF Reg .M Mem Reg

Inf3 Computer Architecture - 2017-2018 29

Code scheduling to avoid stalls (after)

= SUB is entirely independent of other instructions - place after 1st load
= ADD to R1 can be placed after LW to R3 to hide the load delay on R3

| c1 | c2 | c3 | c4 | c5 | c6 | c/ | c8 | c9 | c10
|

LW R1, 2(R2) IF

o Reg .m Mem Reg

LS
a
L]
L]
L]
“,
L 4

ADD R1, R1, 4 IF Reg .@ Mem| - Reg!
) |
ADD R4, R4, R3 IF Reg

Inf3 Computer Architecture - 2017-2018 30

General Performance Impact of Hazards

. . . CPIunpipelined CIOCkunpipelined
Speedup from pipelining: S =
CPIpipelined CIOCkpipelined

CPI = ideal CPI + stall cycles per instruction = 1 + stall cycles per instruction

pipelined

CPI ~ pipeline depth

unpipelined

Clockunpipelined ~1

CIOCkpipelined

pipeline depth

1 + stall cycles per instruction

Inf3 Computer Architecture - 2017-2018 31

Control Hazards

= When a branch is executed, PC is not affected until the branch instruction
reaches the MEM stage.

= By this time 3 instructions have been fetched from the fall-through path.

| c1 | c2 | c3 | c4 | cS | cb | c/ | c8 | c9 | c10
| | |

BEQZ R1l, label IF

Kill instructions
in EX, DEC and IF

SUB R4, R2, R5

as they move
forwards

AND R6, R2, r7

OR R8, r2, R9

label:

XOR R10, R1l, R1l1l ¢ IF Reg lw Mem Reg

Inf3 Computer Architecture - 2017-2018 32

Effect of branch penalty on CPI

In this example pipeline the cost of each branch is:
= 1 cycle, if the branch is not taken (due to load-delay slot)
» 4 cycles, if the branch is taken
If an equal number of branches are taken and not taken, and if 20% of all
instructions are branches (a reasonable assumption), then
- CPI=0.8+0.2*2.5=1.3
- This is a significant reduction in performance

If the pipeline was deeper, with 2 stages for ALU and 2 stages for Decode,
then:

- Cost of taken branch would be 6 cycles

- CPI=0.8+0.2*3.5=1.5
Deeper pipelines have greater branch penalties, and potentially higher CPI
Pentium 4 (Prescott) had 31 pipeline stages! (this was too deep)
Several important techniques have been developed to reduce branch penalties

= Early branch outcome
» Delayed branches with branch delay slot(s)
= Branch prediction (static and dynamic)

Inf3 Computer Architecture - 2017-2018 33

Early branch outcome calculation - BEQZ, BNEZ

IF

DEC

PC

Add

Decode

EX

IogiC/

PC+4
[31:26]
Register File
Instruction
memory [25:21] |Read Reac
Read Read_, | “|Addr0 DatZ 0
Address Datq
[20:16] _|Read Red
“IAddr1 D{la1
»Write Data
—>\Write Addr
[15:0] Sign

) 4

[15:11]

extend

MEM

= Data Memory
ALU > Address
> Read)
data N
, > X
- Write —
| - data
ALU
decode
> >
|
|
|

Inf3 Computer Architecture - 2017-2018

34

Delayed branch execution (branch delay slot)

= Always execute the instruction immediately after the branch, regardless

of branch outcome
c | c2 | c3 | c4 | c5 | c6 c7 c8 c9 | c10
| | |

SUB R4, R2, R5 IF

Before: instruction after
the branch gets killed if the
branch is taken

BEQZ R1, label

OR R8, r2, R9

label:
XOR R10, R1l|, R11

jelay slq

After: by moving the SUB
instruction into the branch
delay slot, and executing it
unconditionally, the 1-cycle
penalty is eliminated

BEQZ R1, label IF

—=

label:
XOR R10, R1l, R11

Inf3 Computer Architecture - 2017-2018 35

Impact of Branch Hazards on CPI

CPI

2.25

1.5

0.75 -

0

[l FP structural stalls
O FP result stalls

O Branch stalls

[l Load stalls

O Base CPI

T T T T
compress espresso li
Benchmark

ear

mdljdp

Bottom-line: CPI increase of 0.06 - 0.62 cycles

Inf3 Computer Architecture - 2017-2018

H&P 5/e
Fig. C.52

36

