ISA: The Hardware - Software Interface

= |nstruction Set Architecture (ISA) is where software meets
hardware

— Understanding of ISA design is therefore important

= |nstruction Set Components

— Operands: int32, uint32, int16, uint16, int8, uint8, float32, float64
— Addressing modes: how do we access data (in regs, memory, etc)
— Operations: four major types

= Operator functions (add, shift, xor, mul, etc)

» Data movement (load-word, store-byte, etc)

= Control transfer (branch, jump, call, return, etc)

= Privileged, and miscellaneous instructions (not part of the application)

= Good understanding of compiler translation is essential

Inf3 Computer Architecture - 2017-2018 1

ISA Design Considerations

Simple target for compilers

Support for OS and programming language features
Support for important data types (floating-point, vectors)
Code size

Impact on execution efficiency (especially with pipelining)
Backwards compatibility with legacy processors

Provision for extensions

Inf3 Computer Architecture - 2017-2018 2

CISC vs RISC

= CISC

- Assembly programming > HLL features as instructions
— Small # registers (but memory “fast”) - in-memory operands

— Code size must be small (transistors scarce) = variable
length instructions

- Backward compatibility > complexity grows over time

= RISC

- Compilers &> Simple instructions

- Large # registers, memory much slower than processor >
load-store architecture

- Simple and fast decoding - fixed length, fixed format

Inf3 Computer Architecture - 2017-2018

Instruction Classes

= |Instructions that operate on data

— Arithmetic & logic operations

- Execution template: fetch operands, perform op, store
result

» |nstructions that move data

- Move data between registers, memory, and I/0 devices

= Instructions that change control flow

— Re-direct control flow away from the next instruction

- May be conditional or unconditional (including
exceptions!)

Inf3 Computer Architecture - 2017-2018 4

Operators and their Instructions

= Integer Arithmetic

+ add
- sub
* mul
/ div
% rem

= Relational C operator Comparison | Reverse Branch
< slt, sltu — >¢9 0 bnez
<= sle, sleu = Seq 0 beqz
> sgt, sgtu < slt, sltu 0 bnez
>= sge, sgeu >= slt, sltu 0 beqgz
== Seq > slt, sltu 1 bnez
= sne <= slt, sltu 1 beqz

Inf3 Computer Architecture - 2017-2018 5

Operators continued...

= Bit-wise logic

I or

& and
A xor
~ not

= Boolean
Il (src1 1= 0 or src2 1= 0)
&& (src1 =0 and src2 = 0)

= Shifts
>> (signed) shift-right-arithmetic
>> (unsigned) shift-right-logical
<< shift-left-logical

Inf3 Computer Architecture - 2017-2018

Operand Types

= Usually based on scalar types in C

Type modifier C type declarator Machine type
unsigned int, long uint32
unsigned short uintlé ThiS assumes a
unsigned char uint8 _ o o '
unsigned long long uint64 32 blt maChlne.
signed int int32
signed short intlé
signed char int8
signed long long inté64

float float32

double float64

&<type_specifier> uint32

= C defines integer promotion for expression evaluation

- intl6 + int32 will be performed at 32-bit precision
= First operand must be sign-extended to 32 bits

- Similarly, uint8 + int16 will be performed at 16-bit precision
» First operand must be zero-extended to 16-bit precision

» Result (signed or unsigned) determined by the result var’s type in the source code
Inf3 Computer Architecture - 2017-2018 7

Instruction Operands - Registers

= How many register-based operands should be specified?
3: R1 =R2 +R3
2: R1 =R1 +R2
1: +R1
= 32-bit RISC architectures normally specify 3 registers for dyadic operations and 2
registers for monadic operations

= Compact 16-bit embedded architectures often specify respectively 2 and 1 register
in these cases
- Reduces cost through fewer ports in the register file, less wire routing, etc.
“Destructive” ops > Requires extra register copying to preserve original values
- E.g.
load r1, [address]
copy r2,rl

add r1,r3

sub r4,r2 # this is simply a re-use of r1, but the value of r1 had to be copied
into r2

= Accumulator architectures: now dead, but concept still widely used in Digital Signal
Processors (DSP).
- E.g.

load [address1] . Lo o
add 23 Register (accumulator) is implicit
store [address?2]

Inf3 Computer Architecture - 2017-2018 8

Instruction Operands - Literals

= Constant operands
- E.g.addr1,r2, 45

= Jump or branch targets

- Relative:
» Normally used for if-then-else and loop constructs within a single function
» Distances normally short - can be specified as 16-bit signed & scaled offset
» Permits “position independent code” (PIC)
- Absolute
» Normally used for function call and return

» But not all function addresses are compile-time constants, so jump to contents of

register is also necessary for flexibility

= |Load/Store addresses

- Relative

- Absolute

Inf3 Computer Architecture - 2017-2018 9

How big do literals have to be?

= Addresses
- Fixed & machine-specific: typically 32 or 64 bits
= Arithmetic operands
— Small numbers, typically representable in 5 - 10 bits

= Literals are often used repeatedly at different locations

- Place as read-only data in the code and access relative to program
counter register (e.g. MIPS16, ARM-thumb)

= Branch offsets
- 10 bits catches most branch distances
= 32-bit RISC architectures provide 16-bit literals
= 16-bit instructions must cope with 5 - 10 bits
- May extend literal using an instruction prefix
- E.g. ARM Thumb bx instruction - can branch conditionally to a target

specified in a register, thus offering a 32-bit displacement

Inf3 Computer Architecture - 2017-2018

10

Memory Access Operations

= Memory operations are governed by:

— Direction of movement (load or store)
- Size of data objects (word, half-word, byte)
— Extension semantics for load data (zero-ext, sign-ext)

Memory
access
/////////EETQ\\\\\\\\\\ store
word half-word byte word half-word byte

1w //////w r\\\\\\ SW sh sb

signed unsigned signed unsigned
1h lhu 1b 1bu

Inf3 Computer Architecture - 2017-2018 11

Memory Addressing Modes: Displacement

Displacement addressing is the most common memory

addressing mode

= Register + offset
— Generic form for accessing via pointers

— Multi-dimensional arrays require address calculations

= Stack pointer and Frame pointer relative

- 5 to 10 bits of offset is sufficient in most cases

= PC relative addresses

- Used to modify control flow (e.g., upon a branch)

- Also to access literals (see earlier slide)

Inf3 Computer Architecture - 2017-2018 12

Other Memory Addressing Modes

= Direct or absolute: useful for accessing constants and
static data

= Auto-increment/decrement: useful for iterating over arrays
or for stack push/pop operations

= Scaled: speeds up random array accesses
€.J., R7 = R5 + Mem[R1l + R2 * (]
where d is determined by the size of the data item being
accessed (byte, hw, word, long)

= Memory indirect: in-memory pointer dereference
€.J., R3 = Mem[Mem[R1]]

Inf3 Computer Architecture - 2017-2018 13

Memory Addressing Mode

Frequency

st vy,
A £
- *,
N -
- -
= -
. v
~
€ 3
o, eV

TeX
Memory indirect gpice

gee

TeX
Scaled spice

gcc |

: : TaX
Register ndirect spice

gee |

TeX
Immediate spice
gce

_ TeX
Displacement spice

gee

1%
— o
d e
‘ 1%
0%

=

16%
6%

24%
3%
1%

17%

32%

_40

43%

39%

55%
Qs
G

0% 10% 20% 30% 40%

50%

60%

Frequency cf the addressing moda

H&P 5/e Fig. A.7

Few addressing modes account for most memory accesses

Inf3 Computer Architecture - 2017-2018

14

Instructions for Altering Control Flow @

Conditional (branches)

(unconditional) Jumps

Function calls and returns

Exceptions & interrupts

- Traps (instructions) vs events

— Trigger a mode Change 85 B Floating-puint average
Callireturn = B Integer average

Jurmnp

82%
75%

Conditional branch

0% 25% 50% 75% 100%

H&P 5/¢ Fig. A.11 _ ;
Frequency of branch instructions

Inf3 Computer Architecture - 2017-2018 15

Conditional Instruction Formats

Condition code based (e.g., x86)
- sub $1, $2
- Sets Z, N, C, V flags

- Branch selects condition
= ble:NorZz

- (+) Condition set for free (“side-effect” of instruction execution)
- (-) Volatile state (next instruction may overwrite flags)

Condition register based

- slte $1, $2, $3

- bnez $1 (or begz $1)

- (+) Simple and reduces number of opcodes
- (-) Uses up a register

Compare and branch

- combt Ite $1, $2
- (+) One instruction per branch
- (-) “Complex” instruction

Inf3 Computer Architecture - 2017-2018

16

Instruction Frequency by Type

Control flow

38%
30%
29%
19%
23%
10%
0%
15% - Data operation Data movement
) I I
0% - I I I l . e

load compare

Data from H&P 5/¢ Flg A.13

call

Inf3 Computer Architecture - 2017-2018

Encoding the Instruction Set

How many bits per instruction?

— Fixed-length 32-bit RISC encoding
— Variable-length encoding (e.g. Intel x86)

— Compact 16-bit RISC encodings
= ARM Thumb
= MIPS16

Formats define instruction groups with a common set of
operands

Orthogonal ISA: addressing modes are independent of the
instruction type (i.e., all insts can use all addressing modes)

— Great conceptually and for compilation

- E.g., VAX-11: 256 opcodes * 13 addressing modes (mode encoded with
each operand)

Inf3 Computer Architecture - 2017-2018 18

MIPS 32-bit Instruction Formats

= R-type (register to register)
— three register operands
- most arithmetic, logical and shift instructions
= |-type (register with immediate)
— instructions which use two registers and a constant
— arithmetic/logical with immediate operand
- load and store

— branch instructions with relative branch distance

= J-type (jump)
— jump instructions with a 26 bit address

Inf3 Computer Architecture - 2017-2018 19

MIPS R-type instruction format

6 bits

add

sll

5 bits

$1,

$4,

$2,

$5,

$3

16

5 bits

5 bits

5 bits

6 bits

special

$2

$3

S1

add

special

$5

S$4

16

sll

Inf3 Computer Architecture - 2017-2018

20

MIPS I-type instruction format

6 bits

1w

beq

addi

5 bits

S——

5 bits

16 bits

$1, offset($2) 1w $2 S1 address offset
$4, $5, .L0OO1 beq $4 $5 |(PC - .L001) >> 2
$1, $2, -10 addi $2 $1 Oxf£ff6

Inf3 Computer Architecture - 2017-2018

21

MIPS J-type instruction format

6 bits

call func

26 bits

jal

absolute func address >> 2

Inf3 Computer Architecture - 2017-2018

22

ISA Guidelines

Regularity: operations, data types, addressing modes, and
registers should be independent (orthogonal)

Primitives, not solutions: do not attempt to match HLL
constructs through the instruction set

Simplify tradeoffs: make it easy for compiler to make choices
based on estimated performance

Inf3 Computer Architecture - 2017-2018 23

