Multiple-lssue Processors: Motivation

= |deal processor: CPI of 1

- no hazards, 1-cycle memory latency

= Realistic processor: CPl ~1

- Dynamic scheduling - avoids stalls on WAR & WAW
dependencies

— Branch prediction - avoids stalls on control flow
dependencies

— Caches - minimize AMAT

= Question: can we do better than that???
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Multiple-lssue Processors

= Answer: Yes!

— Use more transistors: replicate the pipeline!
— start more than one instruction in the same clock cycle

- CPI < 1 (or IPC > 1, Instructions per Cycle)

= Two approaches:

— Superscalar: instructions are chosen dynamically by the
hardware

- VLIW (Very Long Instruction Word): instructions are chosen

statically by the compiler (and assembled in a single long
“instruction”)
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Superscalar Processors

Hardware attempts to issue up to ninstructions on every cycle,
where nis the issue width of the processor and the processor is

said to have nissue slots and to be a n-wide processor

Instructions issued must respect data dependences
In some cycles not all issue slots can be used

Extra hardware is needed to detect more combinations of
dependences and hazards and to provide more bypasses
Branches?

- With branch prediction, we can predict branches and fetch
Instructions

— Can we execute such predicted instructions?
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Speculative Execution

= Speculative execution - execute control-dependent
Instructions even when we are not sure if they
should be executed

= Hardware undo, in case of a misprediction
— Software recovery too costly, performance-wise

= Key ldea: Execute out-of-order but commit in order

- Commit: the results and side-effects (e.g., flags,

exceptions) of an instruction are made visible to the rest
of the system

= Tomasulo + multi-issue + speculation
- Foundation for today’s high-performance processors
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Extending Tomasulo to Support Speculation

Approach: buffer result until instruction ready to

commit (i.e., known to be non-speculative)

— Use buffered result for forwarding to dependent
Instructions

— Discard buffered result if the instruction is on a mis-
speculated execution path

- At commit, write buffered result to register or memory

Decouples forwarding (potentially speculative)

from update of architecturally-visible state (non-

speculative)

— Architecturally visible state: registers (RO-Rn, FO-Fn,
memory)
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Enabling Speculation with the Reorder Buffer

New structure: Reorder Buffer (ROB)

Holds completed results until commit time
Organized as a queue ordered by program (i.e., fetch) order

Takes over the role of the reservation stations for tracking

dependencies and bypassing values

— Accessed by dependent instructions for forwarding of completed, but not-
yet-committed, results

— Reservation stations still needed to hold issued instructions until they
begin execution

Flushed once mis-speculation is discovered (mispredicted
branch commits)

Enables precise exceptions

— exception state recorded in ROB
- flushed if exception occurred on a mis-predicted path
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Tomasulo with Hardware Speculation

Issue:
- Get instruction from queue From instruction fetch unit
- Issue if an RS is free and an ROB entry is Order
also free Instruction [stf4, 8(r2) Buffer
— Stall if no RS or no free ROB entry Queue adi:‘;’ :j 2
mul 3, f1,
- Instructions now tagged with ROB entry IR
number, not RS.Id
Execute:
Y Y
- Same as before: monitor CDB and start -
instruction when operands are available registers
Write Result: I Load buffers ! |
—~ CDB broadcasts result with ROB identifier 6

- ROB captures result to commit later :

- Store operations also saved in the ROB 11 . _v__v_l__v_l_ 4 _v__v_l__v_l_
until store data is available and store
instruction is committed 5

wiN

Reservation

Commlt stations
- If branch, check prediction and squash
following instructions if incorrect

- If store, send data and address to
memory unit and perform write action

- Else, update register with new value and
release ROB entry
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VLIW Processors

= Compiler chooses and “packs” independent instructions
into a single long “instruction” word or “bundle”

= Compiler responsible for avoiding hazards
- Keeps hardware simple

— Compiler’s schedule must be conservative to guarantee safety
= Not all portions of the long instruction word will be used

In every cycle

— Compiler must be able to expose a lot of parallelism in the
schedule to attain good performance

= Example:
MEM op 1 MEM op 2 FP op 1 FP op 2 INT op
1d £18,-32(rl) 1d £22,-40(rl) addd f4,£f0,£f2 addd £8,£6,£2
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VLIW Processors (con’d)

= Key challenge for VLIW processors:

— find control-independent work to fill each word

- Cover data-dependent stalls (e.g., F.DIV immediately
followed by a use of the result) with independent
Instructions

= Solutions:

— Get rid of control flow
= Predication
= Loop unrolling

- Move code around to maximize scheduling opportunities
and minimize stalls
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Superscalar vs. VLIW Processors

SuperScalars

+ Able to handle dynamic events like cache misses, unpredictable memory
dependences, branches, etc.

+ Can exploit old binaries from previous implementations

- Complexity limits issue width to 4-8

VLIW
+ Much simpler hardware implementation

+ Implementations can have wider issue than superscalars

- Require more complex compiler support
= Cannot use old binaries when pipeline implementation changes

- Code size increases because of empty issue slots
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What are the limitations to ILP?

= Fundamental limit to available ILP in a program

=  Limitations on max issue width and ROB size

= Effects of realistic branch prediction

= The effect of limited numbers of rename registers (reservation

stations)

gcc 55

espresso 63

l 7318

fpppp 75
doduc 119

tomcatv 150

0 50 100 150

Instruction issues per cycle

200

Available ILP in a perfect processor,
with none of the above constraints.

- 6 SPEC92 benchmarks
- the first 3 are Int, the last 3 are FP

These levels of ILP are impossible to
achieve in practice due to limitations
above

H&P 4t ed, fig 3.1 (p.157)
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Effect of Branch prediction (2K ROB)
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Limits to Multiple-issue

= Fundamental limits to ILP in most programs:

- Need N independent instructions to keep a W-issue processor busy,
where N = W * pipeline depth

- Data and control dependences significantly limit amount of ILP

= Complexity of the hardware based on issue width:
— Number of functional units increases linearly — OK
— Number of ports for register file increases linearly — bad

— Number of ports for memary increases linearly — bad
[Umber of dependence tests increases quadratically — bad
Bypass/forwarding logic and wires increases quadratically @
These two tend to ultimately limit the

width of practical dynamically-scheduled
superscalars
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Summary of Factors Limiting ILP in Real Programs

= Compared with an ideal processor

- Limited instruction window

— Imperfect branch prediction (pipeline flushes)

- Limited issue width

— Instruction fetch delays (cache misses, across-block fetch)

= |mplications for future performance growth?

— Single processor has inherent limits
— To use future silicon area, need to go to multiple processors
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