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Multiple-Issue Processors: Motivation 

!  Ideal processor: CPI of 1
–  no hazards, 1-cycle memory latency 

!  Realistic processor: CPI ~1
–  Dynamic scheduling – avoids stalls on WAR & WAW 

dependencies
–  Branch prediction – avoids stalls on control flow 

dependencies 
–  Caches – minimize AMAT

!  Question: can we do better than that???
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Multiple-Issue Processors 

!  Answer:  Yes!
–  Use more transistors: replicate the pipeline!
–  start more than one instruction in the same clock cycle 
–  CPI < 1 (or IPC > 1, Instructions per Cycle)

!  Two approaches:
–  Superscalar: instructions are chosen dynamically by the 

hardware
–  VLIW (Very Long Instruction Word): instructions are chosen 

statically by the compiler (and assembled in a single long 
“instruction”)
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Superscalar Processors

!  Hardware attempts to issue up to n instructions on every cycle, 
where n is the issue width of the processor and the processor is 
said to have n issue slots and to be a n-wide processor

!  Instructions issued must respect data dependences

!  In some cycles not all issue slots can be used

!  Extra hardware is needed to detect more combinations of 
dependences and hazards and to provide more bypasses

!  Branches?
–  With branch prediction, we can predict branches and fetch 

instructions

–  Can we execute such predicted instructions?



Speculative Execution

!  Speculative execution – execute control-dependent 
instructions even when we are not sure if they 
should be executed

!  Hardware undo, in case of a misprediction
–  Software recovery too costly, performance-wise

!  Key Idea: Execute out-of-order but commit in order
–  Commit: the results and side-effects (e.g., flags, 

exceptions) of an instruction are made visible to the rest 
of the system 

!  Tomasulo + multi-issue + speculation
–  Foundation for today’s high-performance processors
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Extending Tomasulo to Support Speculation

!  Approach: buffer result until instruction ready to 
commit (i.e., known to be non-speculative)
–  Use buffered result for forwarding to dependent 

instructions
–  Discard buffered result if the instruction is on a mis-

speculated execution path 
–  At commit, write buffered result to register or memory

!  Decouples forwarding (potentially speculative) 
from update of architecturally-visible state (non-
speculative)
–  Architecturally visible state: registers (R0-Rn, F0-Fn, 

memory)
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Enabling Speculation with the Reorder Buffer

New structure: Reorder Buffer (ROB)
!  Holds completed results until commit time 
!  Organized as a queue ordered by program (i.e., fetch) order
!  Takes over the role of the reservation stations for tracking 

dependencies and bypassing values
–  Accessed by dependent instructions for forwarding of completed, but not-

yet-committed, results
–  Reservation stations still needed to hold issued instructions until they 

begin execution
!  Flushed once mis-speculation is discovered (mispredicted 

branch commits)
!  Enables precise exceptions 

–  exception state recorded in ROB
–  flushed if exception occurred on a mis-predicted path
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Tomasulo with Hardware Speculation

!  Issue:
–  Get instruction from queue
–  Issue if an RS is free and an ROB entry is 

also free
–  Stall if no RS or no free ROB entry
–  Instructions now tagged with ROB entry 

number, not RS.Id
!  Execute:

–  Same as before: monitor CDB and start 
instruction when operands are available

!  Write Result:
–  CDB broadcasts result with ROB identifier
–  ROB captures result to commit later
–  Store operations also saved in the ROB 

until store data is available and store 
instruction is committed

!  Commit:
–  If branch, check prediction and squash 

following instructions if incorrect
–  If store, send data and address to 

memory unit and perform write action
–  Else, update register with new value and 

release ROB entry
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ld f1, 4(r1) 

st f4, 8(r2) 

mul f3, f1, f2 
add f4, f5, f3 
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VLIW Processors

!  Compiler chooses and “packs” independent instructions 
into a single long “instruction” word or “bundle”

!  Compiler responsible for avoiding hazards
–  Keeps hardware simple
–  Compiler’s schedule must be conservative to guarantee safety

!  Not all portions of the long instruction word will be used 
in every cycle
–  Compiler must be able to expose a lot of parallelism in the 

schedule to attain good performance

!  Example:
MEM op 1 MEM op 2 FP op 1 INT op 

ld f18,-32(r1) ld f22,-40(r1) addd f4,f0,f2 

FP op 2 

addd f8,f6,f2 



VLIW Processors (con’d)

!  Key challenge for VLIW processors: 
–  find control-independent work to fill each word
–  Cover data-dependent stalls (e.g., F.DIV immediately 

followed by a use of the result) with independent 
instructions

!  Solutions:
–  Get rid of control flow

!  Predication
!  Loop unrolling

–  Move code around to maximize scheduling opportunities 
and minimize stalls
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Superscalar vs. VLIW Processors

SuperScalars
+ Able to handle dynamic events like cache misses, unpredictable memory 

dependences, branches, etc.
+ Can exploit old binaries from previous implementations

- Complexity limits issue width to 4-8

VLIW
+ Much simpler hardware implementation 
+ Implementations can have wider issue than superscalars

- Require more complex compiler support

- Cannot use old binaries when pipeline implementation changes

- Code size increases because of empty issue slots
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What are the limitations to ILP?

!  Fundamental limit to available ILP in a program
!  Limitations on max issue width and ROB size
!  Effects of realistic branch prediction
!  The effect of limited numbers of rename registers (reservation 

stations)

Available ILP in a perfect processor, 
with none of the above constraints.  
- 6 SPEC92 benchmarks  
- the first 3 are Int, the last 3 are FP 

These levels of ILP are impossible to 
achieve in practice due to limitations 
above 

H&P 4th ed, fig 3.1 (p.157)  



Effect of Instruction Window (i.e., ROB)
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H&P 4th ed,  
fig 3.2 (p.159) 



Effect of Branch prediction (2K ROB)
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H&P 4th ed,  
fig 3.3 (p.160) 
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Limits to Multiple-issue

!  Fundamental limits to ILP in most programs:
–  Need N independent instructions to keep a W-issue processor busy, 

where N = W * pipeline depth
–  Data and control dependences significantly limit amount of ILP

!  Complexity of the hardware based on issue width:
–  Number of functional units increases linearly → OK
–  Number of ports for register file increases linearly → bad
–  Number of ports for memory increases linearly → bad
–  Number of dependence tests increases quadratically → bad
–  Bypass/forwarding logic and wires increases quadratically → bad

These two tend to ultimately limit the 
width of practical dynamically-scheduled 
superscalars 
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Summary of Factors Limiting ILP in Real Programs

!  Compared with an ideal processor
–  Limited instruction window
–  Imperfect branch prediction (pipeline flushes)
–  Limited issue width
–  Instruction fetch delays (cache misses, across-block fetch)

!  Implications for future performance growth?
–  Single processor has inherent limits
–  To use future silicon area, need to go to multiple processors


