
Inf3 Computer Architecture - 2016-2017 1

Scoreboard Limitations

!  No forwarding – read from register

!  Structural hazards – stall at issue

!  WAW hazard – stall at issue

!  WAR hazard – stall at write

Dynamic Scheduling reloaded: Motivation

IBM 360/91: ~3 years after CDC 6600

!  Had very few registers
–  4 in IBM 360 vs 8 in CDC 6600
–  Resulted in frequent data dependencies.
" Needed a way to efficiently resolve WAR & WAW

dependencies to maximize opportunity for instruction
reordering

!  Had longer memory & functional unit latencies
" Needed to find independent instructions in the
presence of long-latency stalls

!  Solution: Tomasulo’s Algorithm for improved dynamic
scheduling

Inf3 Computer Architecture - 2016-2017 2

Tomasulo’s Algorithm: key ideas

!  Controls and buffers distributed with functional units
(scoreboard centralizes this functionality)
–  Called reservation stations
–  Prevents front-end blocking due to a structural hazard

!  Register names replaced by pointers to reservation station
entries: register renaming
–  Register renaming avoids WAR & WAW hazards by

renaming all destination registers
! Older readers no longer endangered by younger

writers (avoids WAR hazard)
! Newly issued readers always get the value from most

recent (in program order) writer (avoids WAW hazard)

!  Common data bus broadcasts results to all functional units
–  Provides forwarding functionality

Inf3 Computer Architecture - 2016-2017 3

Register Renaming

!  Register renaming accomplished through reservation
stations (RS) containing:
–  The instruction
–  Operand values (when available)
–  RS number(s) of instruction(s) providing the operand

values

Inf3 Computer Architecture - 2016-2017 4

LD r1, 8(r7) # RS2
MUL.D r4, r0, r1 # RS3

Op ValSrc1 RSSrc1 ValSrc2 RSSrc2

Op 0xABC.
.

– – RS2 RS3
Val of R0 from
RF

Avoiding Data Hazards w/ Register Renaming

Example:
LD r0, 0(r7) # RS1: LD RS1, 0, 0x1000
LD r1, 8(r7) # RS2: LD RS2, 8, 0x1000
MUL.D r4, r0, r1 # RS3: MUL.D RS3, RS1, RS2

Inf3 Computer Architecture - 2016-2017 5

RAW dependence
preserved!

Avoiding Data Hazards w/ Register Renaming

Example:
LD r0, 0(r7) # RS1: LD RS1, 0, 0x1000
LD r1, 8(r7) # RS2: LD RS2, 8, 0x1000
MUL.D r4, r0, r1 # RS3: MUL.D RS3, RS1, RS2
ADD.D r1, r0, r3 # RS4: ADD.D RS4, RS1, 0x16

Inf3 Computer Architecture - 2016-2017 6

WAW dependence avoided through
renaming!

Q: Which r1 should be written into the register file?

A: Only the last (ADD.D " RS4), thus ensuring that
the register file holds the correct register value even
if instructions reordered

✗

Register Renaming Mechanics

!  As each instruction is issued to an RS:
–  Available values are fetched (from register file)

and buffered at the instruction’s RS
–  Dataflow (RAW) dependencies resolved by

changing source register specifiers to RS’
producing those register values

–  A result status register (or rename table) maps
each architectural register to the most recent RS
producing its value

Inf3 Computer Architecture - 2016-2017 7

Inf3 Computer Architecture - 2016-2017 8

Dynamic Scheduling 2: Tomasulo’s Algorithm

!  Handles RAW with proper stalls and eliminates WAR and
WAW through register renaming

!  Step 1: Issue
–  Get next instruction from the fetch queue and issue it to the

reservation stations if there is a free reservation station
–  Read operands from register file if available or rename operands

if pending (resolve WAR, WAW)
!  Step 2: Execute

–  Monitor the CDB for operand(s). Once available, store into all
reservation stations waiting for it

–  Execute instruction when both operands are ready in the
reservation station (RAW)

!  Step 3: Write result
–  Put the result on CDB and write it into the register file (if last

producer) and all reservation stations waiting on it (RAW)

Inf3 Computer Architecture - 2016-2017 9

Address unit

IBM S/360 model 91 used Tomasulo’s Algorithm

!  Dynamic O-O-O execution
!  Tags (RS #’s) used to name flow

dependencies
!  5 reservation stations
!  6 load buffers
!  Issue instructions to reservation

stations, load buffers and store
buffers

!  Instructions wait in reservation
stations or store buffers until all
their operands are collected

!  Functional units broadcast result
and tag on the Common Data Bus
(CDB) for all reservation stations,
store buffers and FP register file

FP adders FP multipliers Memory unit

Address unit

From instruction fetch unit

Instruction
Queue

FP registers

Store buffers Load buffers

Reservation
stations

1
2
3

4
5

6

11

.

.

.

ld f1, 4(r1)

st f4, 8(r2)

mul f3, f1, f2
add f4, f5, f3

Reservation stations associated with
functional units: simplifies scheduling &
management of structural hazards

Reservation station components

!  Op: Operation to be performed
!  Qj, Qk: Reservation station producing source

registers
!  Vj, Vk: Values of source operands
!  Busy: indicates whether reservation station is

busy
!  Register result status Qi: indicates which RS will

write each register, if one exists. Blank
otherwise.

Inf3 Computer Architecture - 2016-2017 10

Inf3 Computer Architecture - 2016-2017 11

Operation of Tomasulo’s Algorithm

!  Instruction Issue:
Get next instruction from head of the issue queue
If reservation station RS is available then:

For each p in { j, k } representing operand register u
If Reg[u].Qi == 0 then RS.Vp = Reg[u].value // value ready now
If Reg[u].Qi != 0 then RS.Qp = Reg[u].Qi // value not yet ready

RS.Busy = 1 // reserve this RS
RS.Op = instruction opcode // set the operation

!  Execution:
Wait until (RS.Qj == 0) and (RS.Qk == 0), and whilst waiting:

For each p in { j, k }
If CDB.tag == RS.Qp then { RS.Vp = CDB.value; RS.Qp = 0 }

When (RS.Qj == 0) and (RS.Qk == 0), perform operation in RS.Op

!  Write Result:
When CDB is free, broadcast CDB = { tag = RS.id, value = RS.result }
and clear RS.Busy

Tomasulo Example

!  LDs: 2 cycles

!  ADDs and SUBDs: 2 cycles

!  MULTDs: 10 cycles

!  DIVDs: 40 cycles

Inf3 Computer Architecture - 2016-2017 12

Tomasulo Example Cycle 0

Inf3 Computer Architecture - 2016-2017 13

Tomasulo Example Cycle 1

Inf3 Computer Architecture - 2016-2017 14

Tomasulo Example Cycle 2

Inf3 Computer Architecture - 2016-2017 15

Tomasulo Example Cycle 3

Inf3 Computer Architecture - 2016-2017 16

Tomasulo Example Cycle 4

Inf3 Computer Architecture - 2016-2017 17

Tomasulo Example Cycle 5

Inf3 Computer Architecture - 2016-2017 18

Tomasulo Example Cycle 6

Inf3 Computer Architecture - 2016-2017 19

Tomasulo Example Cycle 7

Inf3 Computer Architecture - 2016-2017 20

Tomasulo Example Cycle 8

Inf3 Computer Architecture - 2016-2017 21

Tomasulo Example Cycle 9

Inf3 Computer Architecture - 2016-2017 22

Tomasulo Example Cycle 10

Inf3 Computer Architecture - 2016-2017 23

Tomasulo Example Cycle 11

Inf3 Computer Architecture - 2016-2017 24

Tomasulo Example Cycle 12

Inf3 Computer Architecture - 2016-2017 25

Tomasulo Example Cycle 13

Inf3 Computer Architecture - 2016-2017 26

Tomasulo Example Cycle 14

Inf3 Computer Architecture - 2016-2017 27

Tomasulo Example Cycle 15

Inf3 Computer Architecture - 2016-2017 28

Tomasulo Example Cycle 16

Inf3 Computer Architecture - 2016-2017 29

Tomasulo Example Cycle 55

Inf3 Computer Architecture - 2016-2017 30

Tomasulo Example Cycle 56

Inf3 Computer Architecture - 2016-2017 31

Tomasulo Example Cycle 57

Inf3 Computer Architecture - 2016-2017 32

Inf3 Computer Architecture - 2012-2013 33

Tomasulo’s Advantages

!  Register renaming:
–  Qj and Qk can come from any reservation station independent of the register

file → in fact we could have many more reservation stations than registers

–  Vj and Vk store the actual value to be used

!  Parallel release of all instructions dependent as soon as the earlier
instruction completes (both SUB.D and MUL.D get the value from Load_2)

!  No need to wait on WAR and WAW (notice that ADD.D has issued before
DIV.D has read its f6 operand and will execute as soon as the SUB.D
finishes)

