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Virtual Memory

Motivation:
!  Each process would like to see its own, full, address space
!  Clearly impossible to provide full physical memory for all 

processes
!  Processes may define a large address space but use only a 

small part of it at any one time
!  Processes would like their memory to be protected from 

access and modification by other processes
!  The operating system needs to be protected from 

applications
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Virtual Memory

Basic idea:
!  Each process has its own Virtual Address Space, divided 

into fixed-sized pages
!  Virtual pages that are in use get mapped to pages of 

physical memory (called page frames).
–  Virtual memory: pages
–  Physical memory: frames 

!  Virtual pages not recently used may be stored on disk
!  Extends the memory hierarchy out to the swap partition 

of a disk
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Virtual and Physical Memory

!  Example 4K page size

!  Process 1 has pages  
A, B, C and D

!  Page B is held on disk

!  Process 2 has pages  
X, Y, Z

!  Page Z is held on disk

!  Process 1 cannot access 
pages X, Y, Z

!  Process 2 cannot access 
page A, B, C, D

!  O/S can access any page 
(full privileges)
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Sharing memory using Virtual Aliases (Synonym)

!  Process 1 and Process 2 
want to share a page of 
memory

!  Process 1 maps virtual page 
A to physical page P

!  Process 2 maps virtual page 
Z to physical page P

!  Permissions can vary 
between the sharing 
processors.

!  Note: Process 1 can also 
map the same physical  
page at multiple virtual 
addresses !! Swap disk 
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Typical Virtual Memory1 Parameters

!  Modern OS’s support several page sizes for flexibility. On Linux:
–  Normal pages: 4KB
–  Huge pages: 2MB or 1GB

!  Virtual Memory miss is called a page fault

H&P 5/e 
Fig. B.20 

parameter  L1 cache memory 

Size 4KB-64KB 128MB-1TB 

block/page 16-128 bytes 4KB-4GB 

hit time 1-3 cycles 100-300 cycles 

miss penalty 8-300 cycles 1M-10M cycles 

miss rate 0.1-10% 0.00001-0.001% 

1 Note: these parameters are due to a combination of physical 
       memory organization and virtual memory implementation
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Virtual Memory Policies

!  Block identification: finding the correct page frame
–  Assigning tags to memory page frames and comparing tags is 

impractical
–  OS maintains a table that maps all virtual pages to physical page 

frames: Page Table (PT)
–  The OS updates the PT with a new mapping whenever it allocates 

a page frame to a virtual page
–  PT is accessed on a memory request to translate virtual to 

physical address → inefficient! 
!  Solution: cache translations (TLB)

–  One PT per process and one for the OS
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Virtual Memory Policies

!  Block placement: location of a page in memory
–  More freedom → lower miss rates, higher hit and miss penalties
–  Memory access time is already high and memory miss penalty 

(i.e., disk access time) is huge ⇒ must minimize miss rates
–  As a result, memory is fully associative → a virtual page can be 

located in any page frame
!  No conflict misses
!  Important to reduce time to find a page in memory (hit time)

–  To place new pages in memory, OS maintains a list of free frames

!  Block placement may be constrained by use of translated 
virtual address bits when indexing the cache (see later)
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Virtual Memory Policies

!  Block replacement: choosing a page frame to reuse
–  Minimize misses (page faults) → LRU policy

!  True LRU expensive – must minimize CPU time of the algorithm
!  Simple solution: OS sets a Used bit whenever a page is accessed in a 

time quantum. In the next quantum, any page with its Used bit clear 
is eligible for replacement.

–  This requires 2 sets of Used bits 
–  Minimize write backs to disk → give priority to clean pages

!  Write strategy: what happens when a page is written
–  Write-through: would mean writing the cache block back to disk 

whenever the page is updated in main memory  
  → not practical due to latency and bandwidth considerations  
  (~4 orders of magnitude latency gap between memory & disk)

–  Write-back: the norm in today’s virtual memory systems
!  OS tracks modified pages through the use of Dirty bits in page table 

entries



Physical Page Number Permiss. Valid Dirty 
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Page Tables and Address Translation

Page Table Entry (PTE):
!  Track access permissions for 

each page
–  Read, Write, Execute

!  Bit indicates if page is on disk, 
in which case Physical Page 
Number indicates location 
within swap file

!  “Dirty” bit indicates if there 
were any writes to the page

!  4B per PTE in this example

Page Table Address Register 

Physical Page Number PageOffset 

31 0 11 12 

Page Table 

Virtual Page Number PageOffset 

31 0 11 12 
Virtual 
Address 

Physical 
Address 

1 r-w-x 

Disk? 

0 0 PTE 
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Making Page Tables space-efficient

!  The number of entries in the table is the number of virtual 
pages → many! 
–  e.g., 4KB pages  

 " 220=1M entries for a 32b address space # need 4MB/process  
 " 252 entries for a 64b address space # petabytes per process!

–  Solution: 
!  Exploit the observation that the virtual address space of each process 

is sparse → only a fraction of all virtual addresses actually used
!  hash virtual addresses to avoid maintaining a map from each virtual 

page (many) to physical frame (few). 
!  Resulting structure is called the inverted page table 

!  Other (complementary) solutions:
–  Store PTs in the virtual memory of the OS, and swap out recently 

unused portions
–  Use large pages
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Fast address translation: TLB

!  Typically a small, fully- 
associative cache of Page Table 
Entries (PTE)

!  Tag given by VPN for that PTE
!  PPN taken from PTE
!  Valid bit required
!  D bit (dirty) indicates whether 

page has been modified
!  R, W, X bits indicate Read, Write 

and Execute permission
!  Permissions are checked on every 

memory access
!  Physical address formed from 

PPN and Page Offset
!  TLB Exceptions:

–  TLB miss (no matching entry)
–  Privilege violation

!  Often separate TLBs for 
Instruction and Data references

Virtual Page Number PageOffset 

31 0 11 12 
Virtual 
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Physical Page Number V Tag D R W X 
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TLB hit 

Physical Page Number PageOffset 

31 0 11 12 Physical 
Address 
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How to address a cache in a virtual-memory system

Option 1: physically-addressed caches → perform address 
translation before cache access

–  Hit time is increased to accommodate translation  $

CPU 
L1 cache 

tag data 

? 

Main 
memory address 

translation 

Virtual address: 
0x0004 

Physical address: 
0xc104 
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Option 2: virtually-addressed caches → perform address 
translation after cache access if miss

–  Hit time does not include translation  ☺ 
–  Aliases $

CPU 
L1 cache 

tag data 

? 

Main 
memory address 

translation 

How to address a cache in a virtual-memory system

Virtual address: 
0x0004 

Physical address: 
0xc104 
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Problems with virtually addressed caches

!  Virtually tagged data cache problems:

–  A program may use different virtual addresses pointing to the same 
physical address (Aliases or Synonyms)
!  Two copies could exist in the same data cache
!  Writing to copy 1 would not be reflected in copy 2
!  Reading copy 2 would get stale data
!  Thus, does not provide a coherent view of memory

–  Also, must be able to distinguish across different processes: same 
VA, different PA (Homonyms)
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Solutions for handling homonyms and synonyms

!  Flush cache on context switch or add process ID to each tag
–  Will solve the homonym problem
–  But will not solve the synonym problem. 

!  Use physically addressed caches
–  Will solve homonym problem.
–  Will also solve synonym problem. 

!  Synonyms all have same physical address, thus one copy exists in each 
cache

–  Implication: need to do address translation before accessing cache. 

!  Use physically addressed tags? 
–  Must translate addresses before cache tag check
–  May still be able to index cache using non-translated low-order 

address bits under certain circumstances.
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VI-PT: translating in parallel with L1-$ access

!  Access TLB and L1-$ in parallel
!  Requires that L1-$ index be obtained from the non-translated bits 

of the virtual address.
!  This constraint in the number of bits available for the index limits 

the size of the cache!
31 0 11 12 

Virtual 
Address 

Virtual Page Number 
PageOffset 

Offset Index 

31 0 11 12 4 5 

TLB 
L1-$ 

4 KB D-M 
32-byte line 

TLB hit 

IMPORTANT: 
If the cache Index 
extends beyond bit 11, 
into the translated part 
of the address, then 
translation must take 
place before the 
cache can be indexed Tag  

Comparison 

Cache hit 
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Coping with large VI-PT caches

!  Multi-way caches: multiple blocks in the same set
–  E.g., Intel Haswell: 32KB 8-way cache w/ 4KB pages
" High associativity affords large capacity

!  Check other potential sets for aliases on a miss
–  E.g., AMD Opteron: 64KB 2-way cache w/ 4KB pages 
" on a miss, 7 add’l cycles to check for aliases in other sets

!  Larger page size: more bits available for the index
–  Not a universal solution, since most OS’ normal page size is 

4-8KB
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Coping with large VI-PT caches (con’d)

!  Rely on page allocator in the O/S to allocate pages such that the 
translation of index bits would always be an identity relation
–  Hence, if virtual address A translates to physical address P, then  

Page Allocator must guarantee that:  V[12] == P[12]
–  This approach is referred to as “page coloring”.

Cache addressing Cache tag bits Offset Index 

31 0 12 13 4 5 

31 0 11 12 

Virtual Page Number Page offset Virtual addressing 

Any translated bit used to index the cache must be identical 
in both the Virtual and Physical addresses
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Summary: how to address a cache

!  PI-PT : Physically indexed, physically tagged
–  Translation first; then cache access
–  Con: Translation occurs in sequence with L1-$ access → high latency

!  VI-VT : Virtually indexed, virtually tagged
–  L1-$ indexed with virtual address, tag contains virtual address
–  Con: Cannot distinguish synonyms/homonyms in cache
–  Pro:  Only perform TLB lookup on L1-$ miss

!  VI-PT : Virtually indexed, physically tagged
–  L1-$ indexed with virtual address, or often just the un-translated bits
–  Translation must take place before tag can be checked
–  Con: Translation must take place on every L1-$ access
–  Pro:  No synonyms/homonyms in the cache

!  PI-VT : Physically indexed, virtually tagged
–  Not interesting


