
Inf3 Computer Architecture - 2016-2017 1

Virtual Memory

Motivation:
!  Each process would like to see its own, full, address space
!  Clearly impossible to provide full physical memory for all

processes
!  Processes may define a large address space but use only a

small part of it at any one time
!  Processes would like their memory to be protected from

access and modification by other processes
!  The operating system needs to be protected from

applications

Inf3 Computer Architecture - 2016-2017 2

Virtual Memory

Basic idea:
!  Each process has its own Virtual Address Space, divided

into fixed-sized pages
!  Virtual pages that are in use get mapped to pages of

physical memory (called page frames).
–  Virtual memory: pages
–  Physical memory: frames

!  Virtual pages not recently used may be stored on disk
!  Extends the memory hierarchy out to the swap partition

of a disk

Inf3 Computer Architecture - 2016-2017 3

Physical memory
0

4K

8K

12K

16K

20K

Virtual and Physical Memory

!  Example 4K page size

!  Process 1 has pages  
A, B, C and D

!  Page B is held on disk

!  Process 2 has pages  
X, Y, Z

!  Page Z is held on disk

!  Process 1 cannot access
pages X, Y, Z

!  Process 2 cannot access
page A, B, C, D

!  O/S can access any page
(full privileges)

Swap disk

page
swapping

B

A

B

C

D

Virtual memory
(process 1)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

A

C

D

Y

X

X

Y

Z

Virtual memory
(process 2)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

Z

Inf3 Computer Architecture - 2016-2017 4

Physical memory
0

4K

8K

12K

16K

20K

Sharing memory using Virtual Aliases (Synonym)

!  Process 1 and Process 2
want to share a page of
memory

!  Process 1 maps virtual page
A to physical page P

!  Process 2 maps virtual page
Z to physical page P

!  Permissions can vary
between the sharing
processors.

!  Note: Process 1 can also
map the same physical  
page at multiple virtual
addresses !! Swap disk

page
swapping

A

B

C

Virtual memory
(process 1)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

P

Q

Z

Virtual memory
(process 2)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

P Shared page

Q Aliased within one process

Inf3 Computer Architecture - 2016-2017 5

Typical Virtual Memory1 Parameters

!  Modern OS’s support several page sizes for flexibility. On Linux:
–  Normal pages: 4KB
–  Huge pages: 2MB or 1GB

!  Virtual Memory miss is called a page fault

H&P 5/e
Fig. B.20

parameter L1 cache memory

Size 4KB-64KB 128MB-1TB

block/page 16-128 bytes 4KB-4GB

hit time 1-3 cycles 100-300 cycles

miss penalty 8-300 cycles 1M-10M cycles

miss rate 0.1-10% 0.00001-0.001%

1 Note: these parameters are due to a combination of physical 
 memory organization and virtual memory implementation

Inf3 Computer Architecture - 2016-2017 6

Virtual Memory Policies

!  Block identification: finding the correct page frame
–  Assigning tags to memory page frames and comparing tags is

impractical
–  OS maintains a table that maps all virtual pages to physical page

frames: Page Table (PT)
–  The OS updates the PT with a new mapping whenever it allocates

a page frame to a virtual page
–  PT is accessed on a memory request to translate virtual to

physical address → inefficient!
!  Solution: cache translations (TLB)

–  One PT per process and one for the OS

Inf3 Computer Architecture - 2016-2017 7

Virtual Memory Policies

!  Block placement: location of a page in memory
–  More freedom → lower miss rates, higher hit and miss penalties
–  Memory access time is already high and memory miss penalty

(i.e., disk access time) is huge ⇒ must minimize miss rates
–  As a result, memory is fully associative → a virtual page can be

located in any page frame
!  No conflict misses
!  Important to reduce time to find a page in memory (hit time)

–  To place new pages in memory, OS maintains a list of free frames

!  Block placement may be constrained by use of translated
virtual address bits when indexing the cache (see later)

Inf3 Computer Architecture - 2016-2017 8

Virtual Memory Policies

!  Block replacement: choosing a page frame to reuse
–  Minimize misses (page faults) → LRU policy

!  True LRU expensive – must minimize CPU time of the algorithm
!  Simple solution: OS sets a Used bit whenever a page is accessed in a

time quantum. In the next quantum, any page with its Used bit clear
is eligible for replacement.

–  This requires 2 sets of Used bits
–  Minimize write backs to disk → give priority to clean pages

!  Write strategy: what happens when a page is written
–  Write-through: would mean writing the cache block back to disk

whenever the page is updated in main memory  
 → not practical due to latency and bandwidth considerations  
 (~4 orders of magnitude latency gap between memory & disk)

–  Write-back: the norm in today’s virtual memory systems
!  OS tracks modified pages through the use of Dirty bits in page table

entries

Physical Page Number Permiss. Valid Dirty

Inf3 Computer Architecture - 2016-2017 9

Page Tables and Address Translation

Page Table Entry (PTE):
!  Track access permissions for

each page
–  Read, Write, Execute

!  Bit indicates if page is on disk,
in which case Physical Page
Number indicates location
within swap file

!  “Dirty” bit indicates if there
were any writes to the page

!  4B per PTE in this example

Page Table Address Register

Physical Page Number PageOffset

31 0 11 12

Page Table

Virtual Page Number PageOffset

31 0 11 12
Virtual
Address

Physical
Address

1 r-w-x

Disk?

0 0 PTE

Inf3 Computer Architecture - 2016-2017 10

Making Page Tables space-efficient

!  The number of entries in the table is the number of virtual
pages → many!
–  e.g., 4KB pages  

 " 220=1M entries for a 32b address space # need 4MB/process  
 " 252 entries for a 64b address space # petabytes per process!

–  Solution:
!  Exploit the observation that the virtual address space of each process

is sparse → only a fraction of all virtual addresses actually used
!  hash virtual addresses to avoid maintaining a map from each virtual

page (many) to physical frame (few).
!  Resulting structure is called the inverted page table

!  Other (complementary) solutions:
–  Store PTs in the virtual memory of the OS, and swap out recently

unused portions
–  Use large pages

Inf3 Computer Architecture - 2016-2017 11

Fast address translation: TLB

!  Typically a small, fully-
associative cache of Page Table
Entries (PTE)

!  Tag given by VPN for that PTE
!  PPN taken from PTE
!  Valid bit required
!  D bit (dirty) indicates whether

page has been modified
!  R, W, X bits indicate Read, Write

and Execute permission
!  Permissions are checked on every

memory access
!  Physical address formed from

PPN and Page Offset
!  TLB Exceptions:

–  TLB miss (no matching entry)
–  Privilege violation

!  Often separate TLBs for
Instruction and Data references

Virtual Page Number PageOffset

31 0 11 12
Virtual
Address

Physical Page Number V Tag D R W X

=

=

=

=

=

TLB hit

Physical Page Number PageOffset

31 0 11 12 Physical
Address

Inf3 Computer Architecture - 2016-2017 12

How to address a cache in a virtual-memory system

Option 1: physically-addressed caches → perform address
translation before cache access

–  Hit time is increased to accommodate translation $

CPU
L1 cache

tag data

?

Main
memory address

translation

Virtual address:
0x0004

Physical address:
0xc104

Inf3 Computer Architecture - 2016-2017 13

Option 2: virtually-addressed caches → perform address
translation after cache access if miss

–  Hit time does not include translation ☺
–  Aliases $

CPU
L1 cache

tag data

?

Main
memory address

translation

How to address a cache in a virtual-memory system

Virtual address:
0x0004

Physical address:
0xc104

Inf3 Computer Architecture - 2016-2017 14

Problems with virtually addressed caches

!  Virtually tagged data cache problems:

–  A program may use different virtual addresses pointing to the same
physical address (Aliases or Synonyms)
!  Two copies could exist in the same data cache
!  Writing to copy 1 would not be reflected in copy 2
!  Reading copy 2 would get stale data
!  Thus, does not provide a coherent view of memory

–  Also, must be able to distinguish across different processes: same
VA, different PA (Homonyms)

Inf3 Computer Architecture - 2016-2017 15

Solutions for handling homonyms and synonyms

!  Flush cache on context switch or add process ID to each tag
–  Will solve the homonym problem
–  But will not solve the synonym problem.

!  Use physically addressed caches
–  Will solve homonym problem.
–  Will also solve synonym problem.

!  Synonyms all have same physical address, thus one copy exists in each
cache

–  Implication: need to do address translation before accessing cache.

!  Use physically addressed tags?
–  Must translate addresses before cache tag check
–  May still be able to index cache using non-translated low-order

address bits under certain circumstances.

Inf3 Computer Architecture - 2016-2017 16

VI-PT: translating in parallel with L1-$ access

!  Access TLB and L1-$ in parallel
!  Requires that L1-$ index be obtained from the non-translated bits

of the virtual address.
!  This constraint in the number of bits available for the index limits

the size of the cache!
31 0 11 12

Virtual
Address

Virtual Page Number
PageOffset

Offset Index

31 0 11 12 4 5

TLB
L1-$

4 KB D-M
32-byte line

TLB hit

IMPORTANT:
If the cache Index
extends beyond bit 11,
into the translated part
of the address, then
translation must take
place before the
cache can be indexed Tag

Comparison

Cache hit

Inf3 Computer Architecture - 2016-2017 17

Coping with large VI-PT caches

!  Multi-way caches: multiple blocks in the same set
–  E.g., Intel Haswell: 32KB 8-way cache w/ 4KB pages
" High associativity affords large capacity

!  Check other potential sets for aliases on a miss
–  E.g., AMD Opteron: 64KB 2-way cache w/ 4KB pages
" on a miss, 7 add’l cycles to check for aliases in other sets

!  Larger page size: more bits available for the index
–  Not a universal solution, since most OS’ normal page size is

4-8KB

Inf3 Computer Architecture - 2016-2017 18

Coping with large VI-PT caches (con’d)

!  Rely on page allocator in the O/S to allocate pages such that the
translation of index bits would always be an identity relation
–  Hence, if virtual address A translates to physical address P, then  

Page Allocator must guarantee that: V[12] == P[12]
–  This approach is referred to as “page coloring”.

Cache addressing Cache tag bits Offset Index

31 0 12 13 4 5

31 0 11 12

Virtual Page Number Page offset Virtual addressing

Any translated bit used to index the cache must be identical
in both the Virtual and Physical addresses

Inf3 Computer Architecture - 2016-2017 19

Summary: how to address a cache

!  PI-PT : Physically indexed, physically tagged
–  Translation first; then cache access
–  Con: Translation occurs in sequence with L1-$ access → high latency

!  VI-VT : Virtually indexed, virtually tagged
–  L1-$ indexed with virtual address, tag contains virtual address
–  Con: Cannot distinguish synonyms/homonyms in cache
–  Pro: Only perform TLB lookup on L1-$ miss

!  VI-PT : Virtually indexed, physically tagged
–  L1-$ indexed with virtual address, or often just the un-translated bits
–  Translation must take place before tag can be checked
–  Con: Translation must take place on every L1-$ access
–  Pro: No synonyms/homonyms in the cache

!  PI-VT : Physically indexed, virtually tagged
–  Not interesting

