
Announcements

!  Previous lecture
–  Caches

Inf3 Computer Architecture - 2016-2017 1

Inf3 Computer Architecture - 2016-2017 2

Recap: Memory Hierarchy Issues

!  Block size: smallest unit that is managed at each level
–  E.g., 64B for cache lines, 4KB for memory pages

!  Block placement: Where can a block be placed?
–  E.g., direct mapped, set associative, fully associative

!  Block identification: How can a block be found?
–  E.g., hardware tag matching, OS page table

!  Block replacement: Which block should be replaced?
–  E.g., Random, Least recently used (LRU), Not recently used (NRU)

!  Write strategy: What happens on a write?
–  E.g., write-through, write-back, write-allocate

!  Inclusivity: whether next lower level contains all the data found in the
current level
–  Inclusive, exclusive

Announcements

!  Previous lecture
–  Caches

!  This lecture
–  Cache Performance.

!  Tutorials happening this week & next

Inf3 Computer Architecture - 2016-2017 3

Inf3 Computer Architecture - 2016-2017 4

Cache Performance

!  Memory system and processor performance:

!  Improving memory hierarchy performance:
–  Decrease hit time
–  Decrease miss rate
–  Decrease miss penalty

CPU time = IC x CPI x Clock time

CPI = CPIld/st x + CPIothers x
IC

ICld/st

IC
ICothers

CPIld/st = Average memory access time (AMAT)

AMAT= Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Cache Performance – example problem

Assume we have a computer where the CPI is 1
when all memory accesses hit in the cache. Data
accesses (ld/st) represent 50% of all instructions.
If the miss penalty is 25 clocks and the miss rate is
2%, how much faster would the computer be if all
instructions were cache hits?

 [H&P 5th ed, B.1]

Inf3 Computer Architecture - 2016-2017 5

Inf3 Computer Architecture - 2016-2017 6

Inf3 Computer Architecture - 2016-2017 7

Reducing Cache Miss Rates

Cache miss classification: the “three C’s”
!  Compulsory misses (or cold misses): when a block is

accessed for the first time

!  Capacity misses: when a block is not in the cache because it
was evicted because the cache was full

!  Conflict misses: when a block is not in the cache because it
was evicted because the cache set was full
–  Conflict misses only exist in direct-mapped or set-associative caches
–  In a fully associative cache, all non-compulsory misses are capacity

misses

Inf3 Computer Architecture - 2016-2017 8

Cache Misses vs. Cache Size

H&P
Fig. 5.15 Direct mapped 4-way set associative

!  Miss rates are very small in practice (caching is effective!)
!  Miss rates decrease significantly with cache size

–  Rule of thumb: miss rates change in proportion to √ of cache size  
e.g., 2x cache " √2 fewer misses

!  Miss rates decrease with set-associativity because of reduction in
conflict misses

Inf3 Computer Architecture - 2016-2017 9

Reducing Cold Miss Rates

Technique 1: Large block size
–  Principle of spatial locality → other data in the block likely to be used soon
–  Reduce cold miss rate
–  May increase conflict and capacity miss rate for the same cache size (fewer

blocks in cache)
–  Increase miss penalty because more data has to be brought in each time
–  Uses more memory bandwidth

Inf3 Computer Architecture - 2016-2017 10

Cache Misses vs. Block Size

!  Small caches are very sensitive to block size
!  Very large blocks (> 128B) never beneficial
!  64B is a sweet spot " common choice in today’s processors

H&P
Fig. 5.16

Inf3 Computer Architecture - 2016-2017 11

Reducing Cold Miss Rates

Technique 2: Prefetching
–  Idea: bring into the cache ahead of time data or instructions that are likely

to be used soon
–  Can reduce cold misses (also capacity misses)
–  Uses more memory bandwidth
–  Does not typically increase miss penalty (prefetch is generally handled

after main cache access is completed)
–  May increase conflict and capacity miss rates by displacing useful blocks

(cache pollution)
!  Can use a prefetch buffer to avoid polluting the cache

Inf3 Computer Architecture - 2016-2017 12

Prefetching

!  Hardware prefetching: hardware automatically prefetches cache blocks
on a cache miss
–  No need for extra prefetching instructions in the program
–  Effective for regular accesses, such as instructions
–  E.g., next blocks prefetching, stride prefetching

!  Software prefetching: compiler inserts instructions at proper places in
the code to trigger prefetches
–  Requires ISA support (nonbinding prefetch instruction)
–  Adds instructions to compute the prefetching addresses and to perform

the prefetch itself (prefetch overhead)
–  E.g., data prefetching in loops, linked list prefetching

Inf3 Computer Architecture - 2016-2017 13

Software Prefetching

!  E.g., prefetching in loops: Brings the next required block, two
iterations ahead of time (assuming each element of x is 4-bytes long
and the block has 64 bytes).

!  E.g, linked-list prefetching: Brings the next object in the list

for (i=0; i<=999; i++) {
 if (i%16 == 0)
 prefetch(x[i+32]);
 x[i] = x[i] + s;
}

for (i=0; i<=999; i++) {
 x[i] = x[i] + s;
}

while (student) {
 student->mark = rand();
 student = student->next;
}

while (student) {
 prefetch(student->next);
 student->mark = rand();
 student=student->next;
}

Inf3 Computer Architecture - 2016-2017 14

Reducing Conflict Miss Rates

Technique 3: High associativity caches
–  More options for block placement → fewer conflicts
–  Reduce conflict miss rate
–  May increase hit access time because tag match takes longer
–  May increase miss penalty because replacement policy is more

involved

Inf3 Computer Architecture - 2016-2017 15

Cache Misses vs. Associativity

!  Small caches are very sensitive to associativity
!  In all cases more associativity decreases miss rate, but little

difference between 4-way and fully associative

Inf3 Computer Architecture - 2016-2017 16

Reducing Miss Rates

Technique 4: Compiler optimizations

–  E.g., merging arrays: may improve spatial locality if the fields are used
together for the same index

–  E.g., loop fusion: improves temporal locality

int val[size];
int key[size];

struct valkey{
 int val;
 int key;
};
Struct valkey merged_array[size];

for (i=0; i<1000; i++)
 A[i] = A[i]+1;
for (i=0; i<1000; i++)
 B[i] = B[i]+A[i];

for (i=0; i<1000; i++) {
 A[i] = A[i]+1;
 B[i] = B[i]+A[i];
}

Inf3 Computer Architecture - 2016-2017 17

Reducing Miss Rates

–  E.g., blocking: change row-major and column-major array distributions to
block distribution to improve spatial and temporal locality

for (i=0; i<5; i++)
 for (j=0; j<5; j++) {
 r=0;
 for (k=0; k<5; k++) {
 r=r+y[i][k]*z[k][j];
 x[i][j]=r;
 }

// matrix multiplication

i=0;j=0;0<k<5

i=0;j=1;0<k<5

x: y: z:

i=1;j=0;0<k<5

…

Poor spatial and temporal locality Poor temporal locality

Inf3 Computer Architecture - 2016-2017 18

Reducing Conflict Miss Rates – Loop Blocking or Tiling

for (jj = 0; jj < 5; jj = jj+2)
 for (kk = 0; kk < 5; kk = kk+2)
 for (i = 0; i < 5; i++)
 for (j = jj; j < min(jj+2-1,5); j++)
 { r = 0;
 for (k = kk; k < min(kk+2-1,5); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j]= x[i][j] + r;
 }

jj=0;kk=0;i=0;j=0;0<k<1
jj=0;kk=0;i=0;j=1;0<k<1

x: y: z:

jj=0;kk=0;i=1;j=0;0<k<1

Better temporal locality

Inf3 Computer Architecture - 2016-2017 19

Cache Performance II

!  Memory system and processor performance:

!  Improving memory hierarchy performance:
–  Decrease hit time
–  Decrease miss rate (block size, prefetching, associativity, compiler)
–  Decrease miss penalty

CPU time = IC x CPI x Clock time

Avg. mem. time = Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Inf3 Computer Architecture - 2016-2017 20

Reducing Cache Miss Penalty

Technique 1: Victim caches
–  (Can also be considered to reduce miss rate)
–  Very small cache used to capture evicted lines from cache

!  Targets conflict misses
–  In case of cache miss the data may be found quickly in the victim cache
–  Typically 8-32 entries, fully-associative
–  Access victim cache in series or in parallel with main cache: trade-off?

CPU
L1 cache

tag data

Victim cache
tag data

?

Memory address

?

Main
memory

Inf3 Computer Architecture - 2016-2017 21

Reducing Cache Miss Penalty

Technique 2: giving priority to reads over writes
–  The value of a a load is likely to be used soon (i.e., dependent inst may

stall), while writes are “fire-and-forget”
!  Insight: writes are “off the critical path” and their latency doesn’t usually

matter. Thus, don’t stall for writes!

–  Idea: place write misses in a write buffer, and let read misses overtake writes
!  Flush the writes from the write buffer when pipeline is idle or when buffer full

–  Reads to the memory address of a pending write in the buffer now become
hits in the buffer:

1. write miss goes
into write buffer

sw 512(r0), r3
…
lw r2, 512(0)

2. read hits in the write buffer
and gets the value from the
previous write

memory
address value

512 R[r3]
… …

… …

write buffer

Inf3 Computer Architecture - 2016-2017 22

Reducing Cache Miss Penalty

Technique 3: early restart and critical word first
–  On a read miss, processor needs just the requested word (or byte)

!  but processor must wait until the whole block is brought into the cache
–  Early restart: as soon as the requested word arrives in the cache,

send it to the processor
!  Meanwhile, continue reading the rest of the block into the cache

CPU
L1 cache

tag data

?

Main
memory

lw r2, 3(0) 0x0003

01 02 03
Cache block

00
03

04 … 05 … 06 …

Inf3 Computer Architecture - 2016-2017 23

Reducing Cache Miss Penalty

Technique 3: early restart and critical word first
–  On a read miss, processor needs just the requested word (or byte)

!  but processor must wait until the whole block is brought into the cache
–  Critical word first: get the requested word first from the memory

and immediately send it to the processor
!  Meanwhile, continue reading the rest of the block into the cache

CPU
L1 cache

tag data

?

Main
memory

lw r2, 3(0) 0x0003

03
Cache block

03

00 … 01 … 02 … 04 …

Inf3 Computer Architecture - 2016-2017 24

Reducing Cache Miss Penalty

Technique 4: non-blocking (or lockup-free) caches
–  Non-blocking caches: other memory instructions can overtake a

cache miss instruction
!  Cache can service multiple hits while waiting on a miss: “hit under miss”
!  More aggressive: cache can service multiple hits while waiting on

multiple misses: “miss under miss” or “hit under multiple misses”

–  Cache and memory must be able to service multiple requests
concurrently
!  Particularly valuable in dynamically scheduled (out-of-order) processors

–  Must keep track of multiple outstanding memory operations
!  New hardware structure: Miss Status Handler Registers (MSHRs)

–  Address of a block being waited on
–  Capability to merge multiple requests to the same block
–  Destination register

Inf3 Computer Architecture - 2016-2017 25

Non-blocking Caches

H&P
Fig. 5.23

!  Significant improvement from small degree of outstanding memory
operations

!  Some applications benefit from large degrees

Inf3 Computer Architecture - 2016-2017 26

Reducing Cache Miss Penalty

Technique 5: second level caches (L2)
–  Gap between main memory and L1 cache speeds is increasing

–  L2 makes main memory appear to be faster if it captures most of the L1
cache misses
!  L1 miss penalty becomes L2 hit access time if hit in L2
!  L1 miss penalty higher if miss in L2

–  L2 considerations:
!  256KB – 4MB capacity (last level of cache in smartphones & tablets)
!  ~10-20 cycles access time
!  Higher associativity (e.g., 8-16 ways) possible. Why?
!  Higher miss rate than L1. Why?

–  L3 caches are common on laptop/desktop/server processors
!  30+ cycle access time
!  2-20+ MB capacity
!  Very high associativity (16-32 ways)

Inf3 Computer Architecture - 2016-2017 27

Second Level Caches

!  Memory subsystem performance:

!  Miss rates:
–  Local: the number of misses divided by the number of requests to

the cache
!  E.g., Miss rateL1 and Miss rateL2 in the equations above
!  Usually not so small for lower level caches

–  Global: the number of misses divided by the total number of
requests from the CPU
!  E.g, L2 global miss rate = Miss rateL1 x Miss rateL2
!  Represents the aggregate effectiveness of the cache hierarchy

Avg. mem. time = Hit timeL1 + Miss rateL1 x Miss penaltyL1

Miss penaltyL1 = Hit timeL2 + Miss rateL2 x Miss penaltyL2

∴ Avg. mem. time = Hit timeL1 + Miss rateL1 x (Hit timeL2 + Miss rateL2 x Miss penaltyL2)

Inf3 Computer Architecture - 2016-2017 28

Cache Misses vs. L2 size

!  L2 caches must be much bigger than L1
!  Local miss rates for L2 are larger than for L1 and are not a good

measure of overall performance

H&P
Fig. 5.10

Secondary working
set accommodated

Inf3 Computer Architecture - 2016-2017 29

Cache Performance II

!  Memory system and processor performance:

!  Improving memory hierarchy performance:
–  Decrease hit time
–  Decrease miss rate (block size, prefetching, associativity, compiler)
–  Decrease miss penalty (victim caches, reads over writes, prioritize critical

word, non-blocking caches, additional cache levels)

CPU time = IC x CPI x Clock time

Avg. mem. time = Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Inf3 Computer Architecture - 2016-2017 30

Reducing Cache Hit Time

Technique 1: small and simple caches

–  Small caches are compact " have short wire spans
!  Wires are slow

–  Low associativity caches have few tags to compare against the
requested data

–  Direct mapped caches have only one tag to compare and comparison
can be done in parallel with the fetch of the data

Inf3 Computer Architecture - 2016-2017 31

Reducing Cache Hit Time

Technique 2: virtual-addressed caches
–  Programs use virtual addresses for data, while main memory uses physical

addresses → addresses from processor must be translated at some point

CPU
L1 cache

tag data

?

Virtual address:
0x0004

address
translation

Physical address:
0xc104

Inf3 Computer Architecture - 2016-2017 32

Reducing Cache Hit Time

Technique 2: virtual address caches
–  Programs use virtual addresses for data, while main memory uses physical

addresses → addresses from processor must be translated at some point
–  Option 1: physical address caches → perform address translation before

cache access
!  Hit time is increased to accommodate translation

CPU
L1 cache

tag data

?

Main
memory

0x0003

address
translation

0x2103

Inf3 Computer Architecture - 2016-2017 33

Reducing Cache Hit Time

Technique 2: virtual address caches
–  Option 2: virtual address caches → perform address translation after cache

access if miss
!  Hit time does not include translation

CPU
L1 cache

tag data

?

Main
memory

0x0003

address
translation

0x2103

Discussed in “Virtual Memory” lecture

Inf3 Computer Architecture - 2016-2017 34

Cache Performance Techniques

technique miss rate miss penalty hit time complexity

large block size ☺ $ ☺

high associativity ☺ $ $%

victim cache ☺ ☺ $

hardware prefetch ☺ $

compiler prefetch ☺ $

compiler optimizations ☺ $

prioritisation of reads ☺ $

critical word first ☺ $

nonblocking caches ☺ $

L2 caches ☺ $

small and simple caches $ ☺ ☺

virtual-addressed caches ☺ $

