
Announcements

!  Previous lecture
–  Dynamic scheduling using Scoreboarding

!  This lecture
–  Caches.

!  Tutorials resume this week (Tutorial 4)

Inf3 Computer Architecture - 2016-2017 1

Inf3 Computer Architecture - 2016-2017 2

Memory Hierarchies

Ideally one would desire an indefinitely large memory capacity such
that any particular … word would be immediately available …
we are … forced to recognize the possibility of constructing a

hierarchy of memories, each of which has greater capacity than the
preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann - 1946

Memory size

+

-
Speed

-

+
Price

-

+ registers

caches (SRAM)

memory (DRAM)

disks

Inf3 Computer Architecture - 2016-2017 3

The Memory Gap

Bottom-line: memory subsystem design increasingly important

H&P 5/e, Fig. 2.2

1.2x-1.5x

1.07x

Idea of a memory hierarchy

!  Use combination of memory kinds
– Smaller amounts of expensive but fast memory

closer to the processor
– Larger amounts of cheaper but slower memory

farther from the processor

!  Idea is not new:

4 Inf3 Computer Architecture - 2016-2017

“Ideally one would desire an indefinitely large
memory capacity such that any particular … word
would be immediately available… we are … forced to
recognize the possibility of constructing a hierarchy
of memories, each of which has greater capacity than
the preceding but which is less quickly accessible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann - 1946

Inf3 Computer Architecture - 2016-2017 5

Why is a memory hierarchy effective?

!  Temporal Locality:
–  A recently accessed memory location (instruction or data)

is likely to be accessed again in the near future

!  Spatial Locality:
–  Memory locations (instructions or data) close to a recently

accessed location are likely to be accessed in the near
future

!  Why does locality exist in programs?
–  Instruction reuse: loops, functions
–  Data working sets: arrays, temporary variables, objects

!  Bottom-line: small, fast caches backed up by larger, slower
memories give the impression of a single, large, fast memory

Inf3 Computer Architecture - 2016-2017 6

Memory Hierarchy

upper levels

processor

1st level
Cache (L1)

2nd level
Cache (L2)

Main
memory

Disk

registers

lower levels

• faster
• smaller
• more expensive

• slower
• bigger
• cheaper

Explicitly managed
by the user program
(compiler)

Transparently managed
by the cache and
memory controllers

Transparently managed
by OS virtual memory
manager

512B <1ns

1ns (1GHz)

8-64KB 1-2ns

1-40MBs 10-20ns

1-100GBs 100ns

>1TB 2-5ms

NVM: <1TB, 1-10 µs

Stacked memory

Inf3 Computer Architecture - 2016-2017 7

Memory Hierarchy Issues

!  Block size: smallest unit that is managed at each level
–  E.g., 64B for cache lines, 4KB for memory pages

!  Block placement: Where can a block be placed?
–  E.g., direct mapped, set associative, fully associative

!  Block identification: How can a block be found?
–  E.g., hardware tag matching, OS page table

!  Block replacement: Which block should be replaced?
–  E.g., Random, Least recently used (LRU), Not recently used (NRU)

!  Write strategy: What happens on a write?
–  E.g., write-through, write-back, write-allocate

!  Inclusivity: whether next lower level contains all the data found in the
current level
–  Inclusive, exclusive

Inf3 Computer Architecture - 2016-2017 8

Cache Block Placement

Block: 0 1 12 31

Memory

Block: 0 1 2 3 4 5 6 7

Cache

Fully associative:

block 12 can go anywhere
in the cache

Block:

Cache

Set associative:

block 12 can go anywhere
in set 0

(12 mod 4)

Block: 0 1 2 3 4 5 6 7

Cache

Direct mapped:

block 12 can only go
into block 4
(12 mod 8)

Set:
0 1 2 3 4 5 6 7
0 1 2 3

Inf3 Computer Architecture - 2016-2017 9

Summary of Cache Associativity

!  Fully associative
–  The block from the lower level can go into any block frame in the cache
–  Most flexible approach → lowest miss rate
–  Must search the whole cache to find the block  

→ increased access time and high power consumption

!  Direct mapped
–  The block from the lower level can only go into one frame in the cache
–  Simplest approach to implement
–  Cache can fill up unevenly → increased miss rates

!  Set associative
–  Split the cache into groups of m blocks (sets) → m-way set-associative
–  The block from the lower level can only go into one set, but within that

set it can go anywhere
–  What’s a good degree of associativity?

!  Higher level caches: 2- or 4-way common
!  Lower level caches: 8- to 32-way common

Inf3 Computer Architecture - 2016-2017 10

Cache Block Identification

!  Every block is identified by a name or tag, which is part of the memory
address

!  Block tag is stored alongside the block data in the cache
!  Block tags in the cache are compared with the tag of the requested

block → often in parallel for set-associative caches, for speed
!  Block tag from memory address:

–  Data address: the address of the byte being referenced → 32 bits for MIPS
–  Offset: the byte within the block; e.g., 6 bits for a 64B block
–  Index: the set where the block can be found; e.g., 8 bits for a 4-way 64KB

cache
–  Tag: the “ID” of the block; e.g., 32-8-6=18 bits

Full memory address: Block offset Index Tag

Inf3 Computer Architecture - 2016-2017 11

Address Mapping Example

!  Cache: 32 KBytes, 2-way, 64 byte lines
!  Address: 32 bits

!  Example: 0x000249F0 = (0000 0000 0000 0010 0100 1001 1111 0000)2

Inf3 Computer Architecture - 2016-2017 12

Address Mapping Example

!  Cache: 32 KBytes, 2-way, 64 byte lines
!  Address: 32 bits

!  Example: 0x000249F0 = (0000 0000 0000 0010 0100 1001 1111 0000)2

–  Byte offset
 64 bytes → 6 bits ⇒ 11 0000

–  Index: 32K/64 = 512 lines in the cache
 512/2 = 256 sets in the cache
 256 sets → 8 bits ⇒ 00 1001 11 = 39

–  Tag:
 0000 0000 0000 0010 01

offset index tag

Inf3 Computer Architecture - 2016-2017 13

Cache Organization: Direct mapped

H&P
(2e)

Fig. 5.5 (Alpha 21064)

tag
<21>

…

?

CPU
address
Data Data
in out

valid
<1>

data
<256>

…

tag

Block address
<21> <8> <5>

Block
offset

Write
buffer

Lower level
memory

index

Inf3 Computer Architecture - 2016-2017 14

Cache Organization: 2-way set associative

tag
<29>

?

CPU
address
Data Data
in out

valid
<1>

data
<512>

tag

2:1 MUX

Block address
<29> <9> <6>

Block
offset

Lower level
memory

index

?

H&P
Fig. 5.7
(Alpha
21264)

Inf3 Computer Architecture - 2016-2017 15

Cache Block Replacement

!  To bring a new block in the cache, another block must be
evicted

!  Direct mapped caches: there is only one choice of block
to evict

!  Associative caches: how to choose a “victim”?
–  Random: select a victim block in the set randomly
–  Least-recently-used (LRU): select the block that has not

been used for the longest period of time 
 → works well in practice because of the principle of locality

–  Not-recently-used (NRU): select a block other than the
most-recently used block.
!  Need less storage than LRU and performs better than random

–  Ideal: select the block that will not be used for the longest
period of time  
 → requires knowledge of the future " unrealistic!

Inf3 Computer Architecture - 2016-2017 16

Cache Write Strategies

How are the writes handled (i.e, when do stores reach a lower level
of the memory hierarchy)?

!  Write through: write to lower level as cache is modified
–  Writes will perform at the speed of the lower level of memory

hierarchy
–  Generates more traffic
–  Lower level is kept coherent with higher level (particularly important

for multi-processors)

!  Write back: only write to lower level when the block is evicted
–  Writes will perform at the speed of the higher level
–  Generates less traffic
–  Lower level can have stale data for some time (cache-coherency

problem)

Inf3 Computer Architecture - 2016-2017 17

Cache Write Strategies

What happens if the block is not found in the cache?

!  Write allocate: bring the block into the cache and write to it
–  Good if block will soon be used by another memory access

(locality)
–  Usually used with write back

!  Write no-allocate: do not bring block into cache and modify
data in the lower level
–  Good if no memory access to the same block occur in the near

future
–  Usually used with write through

Multi-Level Caches

Do lower-level caches keep a copy of the block
that’s brought into a higher-level cache?
!  Inclusive caches:

–  Lower-level cache has a copy of every block in higher-
level caches

–  Wastes capacity of lower-level caches #
–  Simplifies finding a cache block by another entity (e.g.,

other processors) ☺

!  Exclusive caches:
–  A block may reside in only one level of the cache

hierarchy
–  Maximizes aggregate capacity of the cache hierarchy ☺
–  Requires a uniform block size for all cache levels #

Inf3 Computer Architecture - 2016-2017 18

