Announcements

= Previous lecture
— Dynamic scheduling using Scoreboarding

= This lecture
— Caches.

= Tutorials resume this week (Tutorial 4)

Inf3 Computer Architecture - 2016-2017 1

Memory Hierarchies

Ideally one would desire an indefinitely large memory capacity such
that any particular ... word would be immediately available ...
we are ... forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the
preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann - 1946

Memory size Speed Price
— registers

—— caches (SRAM)

+

— memory (DRAM)

— disks

Inf3 Computer Architecture - 2016-2017 2

The Memory Gap

100,000

1.2x-1.5x

Performance

20105 2010
H&P 5/e, Fig. 2.2

I I
1995 2000

Year

I I
1980 1985 1990

Bottom-line: memory subsystem design increasingly important

Inf3 Computer Architecture - 2016-2017

ldea of a memory hierarchy

= Use combination of memory kinds

— Smaller amounts of expensive but fast memory
closer to the processor

— Larger amounts of cheaper but slower memory
farther from the processor

= |dea is not new:

“Ideally one would desire an indefinitely large
memory capacity such that any particular ... word
would be immediately available... we are ... forced to
recognize the possibility of constructing a hierarchy
of memories, each of which has greater capacity than

the preceding but which is less quickly accessible.”
A. W. Burks, H. H. Goldstine, and J. von Neumann - 1946

Inf3 Computer Architecture - 2016-2017 4

Why is a memory hierarchy effective?

Temporal Locality:

- A recently accessed memory location (instruction or data)
s likely to be accessed again in the near future

Spatial Locality:

- Memory locations (instructions or data) close to a recently
accessed location are likely to be accessed in the near
future

Why does locality exist in programs?

— Instruction reuse: loops, functions
— Data working sets: arrays, temporary variables, objects

Bottom-line: small, fast caches backed up by larger, slower
memories give the impression of a single, large, fast memory

Inf3 Computer Architecture - 2016-2017

Memory Hierarchy

upper levels

1ns (1GHz)

512B <1ns registers

e faster
» smaller 8-64KB 1-2ns | 1*level
* more expensive Cache (L1)
1-40MBs 10-20ns 2" level
Cache (L2)

Stacked memory——/>|

- slower 1-100GBs 100ns &0

* bigger

e cheaper | NVM: <1TB, 1-10 ps— >
lower levels

>1TB 2-5ms

Inf3 Computer Architecture - 2016-2017

NN NS

Explicitly managed
by the user program
(compiler)

Transparently managed
by the cache and
memory controllers

Transparently managed
by OS virtual memory
manager

Memory Hierarchy Issues

Block size: smallest unit that is managed at each level
- E.g., 64B for cache lines, 4KB for memory pages

Block placement: Where can a block be placed?
- E.g., direct mapped, set associative, fully associative

Block identification: How can a block be found?
- E.g., hardware tag matching, OS page table

Block replacement: Which block should be replaced?
- E.g., Random, Least recently used (LRU), Not recently used (NRU)

Write strategy: What happens on a write?
- E.g., write-through, write-back, write-allocate

Inclusivity: whether next lower level contains all the data found in the

current level
- Inclusive, exclusive

Inf3 Computer Architecture - 2016-2017

Cache Block Placement

Memory
Block: 0 1 12 31
Cache Cache Cache

Block: 01234567 Block: 01234567 Block: 01234567
Set: o 1 2 3

Fully associative: Direct mapped: Set associative:
block 12 can go anywhere block 12 can only go block 12 can go anywhere
in the cache into block 4 in set0

(12 mod 8) (12 mod 4)

Inf3 Computer Architecture - 2016-2017 8

Summary of Cache Associativity

= Fully associative
— The block from the lower level can go into any block frame in the cache

Most flexible approach — lowest miss rate

Must search the whole cache to find the block
— increased access time and high power consumption

= Direct mapped
— The block from the lower level can only go into one frame in the cache

Simplest approach to implement
Cache can fill up unevenly — increased miss rates

= Set associative

Split the cache into groups of m blocks (sets) — m-way set-associative

The block from the lower level can only go into one set, but within that
set it can go anywhere

What’s a good degree of associativity?
= Higher level caches: 2- or 4-way common
= Lower level caches: 8- to 32-way common

Inf3 Computer Architecture - 2016-2017

Cache Block Identification

= Every block is identified by a name or tag, which is part of the memory
address

= Block tag is stored alongside the block data in the cache

= Block tags in the cache are compared with the tag of the requested
block — often in parallel for set-associative caches, for speed

= Block tag from memory address:

Full memory address: Tag Index | Block offset

— Data address: the address of the byte being referenced — 32 bits for MIPS
- Offset: the byte within the block; e.g., 6 bits for a 64B block

- Index: the set where the block can be found; e.g., 8 bits for a 4-way 64KB
cache

- Tag: the “ID” of the block; e.g., 32-8-6=18 bits

Inf3 Computer Architecture - 2016-2017 10

Address Mapping Example

= (Cache: 32 KBytes, 2-way, 64 byte lines
= Address: 32 bits

= Example: 0xO00249F0 = (0000 0000 0000 0010 0100 1001 1111 0000),

Inf3 Computer Architecture - 2016-2017 11

Address Mapping Example

= (Cache: 32 KBytes, 2-way, 64 byte lines
= Address: 32 bits

= Example: 0xO00249F0 = (0000 0000 0000 0010 0100 1001 1111 0000),

- Byte offset tag index offset
64 bytes — 6 bits = 11 0000

- Index: 32K/64 = 512 lines in the cache
512/2 = 256 sets in the cache
256 sets — 8 bits = 00 1001 11 = 39

- Tag:
0000 0000 0000 0010 O1

Inf3 Computer Architecture - 2016-2017 12

Cache Organization: Direct mapped

Block
CPU
Block address offset address
<21> <8> <5> Data Data
tag index i
| —'[1q] out
valid tag data .
<1> <21> <256> |
» |
\ 4
Write
buffer
O l
Lower level
H&P memory
(2e)

Fig. 5.5 (Alpha 21064)

Inf3 Computer Architecture - 2016-2017

13

Cache Organization: 2-way set associative

Block
Block address offset ::oﬁess
<29> <9> <6> Data Data
tag index —'[in out
valid tag data
<1> <29> <512> ¥
H&P
>
] Fig. 5.7
(Alpha
er)w 21264)
|]
Lower level
ﬁ J i * memory
@ 2:1 MUX

]

Inf3 Computer Architecture - 2016-2017

14

Cache Block Replacement

To bring a new block in the cache, another block must be
evicted

Direct mapped caches: there is only one choice of block
to evict

Associative caches: how to choose a “victim”?
- Random: select a victim block in the set randomly

- Least-recently-used (LRU): select the block that has not
been used for the longest period of time
— works well in practice because of the principle of locality

- Not-recently-used (NRU): select a block other than the
most-recently used block.
= Need less storage than LRU and performs better than random

- Ideal: select the block that will not be used for the longest
period of time
— requires knowledge of the future - unrealistic!

Inf3 Computer Architecture - 2016-2017 15

Cache Write Strategies

How are the writes handled (i.e, when do stores reach a lower level
of the memory hierarchy)?

= Write through: write to lower level as cache is modified

— Writes will perform at the speed of the lower level of memory
hierarchy

- Generates more traffic

- Lower level is kept coherent with higher level (particularly important
for multi-processors)

= Write back: only write to lower level when the block is evicted

- Writes will perform at the speed of the higher level
— Generates less traffic

- Lower level can have stale data for some time (cache-coherency
problem)

Inf3 Computer Architecture - 2016-2017 16

Cache Write Strategies

What happens if the block is not found in the cache?

= Write allocate: bring the block into the cache and write to it

- Good if block will soon be used by another memory access
(locality)

— Usually used with write back

= Write no-allocate: do not bring block into cache and modify

data in the lower level

- Good if no memory access to the same block occur in the near
future

— Usually used with write through

Inf3 Computer Architecture - 2016-2017 17

Multi-Level Caches

Do lower-level caches keep a copy of the block
that’s brought into a higher-level cache?

= |nclusive caches:

- Lower-level cache has a copy of every block in higher-
level caches

- Wastes capacity of lower-level caches ®

— Simplifies finding a cache block by another entity (e.g.,
other processors) ©

= Exclusive caches:

- A block may reside in only one level of the cache
hierarchy

- Maximizes aggregate capacity of the cache hierarchy ©
— Requires a uniform block size for all cache levels ®

Inf3 Computer Architecture - 2016-2017 18

