Handling Hazards

= Structural hazards

- Stalling: pipeline interlock
— Code scheduling

= Data hazards

- Stalling: pipeline interlock
- Forwarding
- Load delay
= Stalling: pipeline interlock
» Code scheduling: fill the load delay slot

= Control Hazards

- Early branch resolution

- Stalling: flushing the pipeline
- Delayed branch

- Predict non taken (or taken)
- Static branch prediction

— Dynamic branch prediction

Inf3 Computer Architecture - 2015-2016 1

Exceptions and Pipelining

= Recoverable exceptions is a challenge (e.g. pagefault,
arithmetic exception)

= |nstructions before must commit
= |nstruction after must be killed

= Instructions causing exception must be re-executed
with same operands

= Exceptions may overlap in pipeline, or even occur out-
of-order

= Handling of exception delayed until Instruction reaches last
stage.

Multicycle Operations

= Floating point operations take multiple cycles in EXE

= Assume a system with 1 int ALU, 1 FP/int multiplier, 1 FP adder, 1 FP/int
divider

EXE
int ALLU

——

EXE
FP/int
multiply

IF ID MEM WB

EXE
FP add

C——>

EXE
FP/int
divide

C——>

Inf3 Computer Architecture - 2015-2016 3

Multicycle Operations

= [nstruction latency: cycles to wait for the result of an instruction

- Usually the number of cycles for the execution pipeline minus 1

- e.g. O cycles for integer ALU since no wait is necessary

= |Instruction initiation interval: time to wait to issue another
instruction of the same type

- Not equal to number of cycles, if multicycle operation is pipelined or
partially pipelined
= Examples:

- Integer ALU:
1 EXE cycle — latency = O; initiation interval = 1

- FP add, fully pipelined:
4 EXE cycles — latency = 3; initiation interval = 1

- FP divide, not pipelined:
25 EXE cycles — latency = 24; initiation interval = 25

Inf3 Computer Architecture - 2015-2016 4

Multicyle Operations: Handling Hazards

Structural hazards can occur when functional unit not fully pipelined

(initiation interval > 1) — need to add interlocking

RAW hazards become longer

Possibly more than one register write per cycle — either add ports to

register file or treat conflict as a hazard and stall

Possible hazards between integer and FP instructions — use separate

register files

WAW hazards are possible — stall second instruction /L=]\

or prevent first instruction from writing

/ o FP/ant

ID

Inf3 Computer Architecture - 2015-2016

EXE |,

EXE |7

multiply

«| EXE

3| MEM

WB

FPadd |~ /

EXE
. FP/im
divide

Loop Example

for (i=1000; i>0; i--)
X[i] = x[i] + s

= Straightforward code and schedule:

- Assume F'2 contains the value of s

- Load latency equals 1

- FP ALU latency 3 to another FP ALU and 2 to a store

loop: L.D FO,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
S.D F4,0 (R1)
DADDUI R1,R1,-8
stall
BNE R1,R2,1o00p
stall

;FO=array element
;add depends on 1d
ymain computation
;st depends on add

;store result
;decrement index
;bne depends on add
;ynext iteration
;branch delay slot

Inf3 Computer Architecture - 2015-2016

Cycle

=

O 0O Jd oo U b W DN

10

Iteration Scheduling @

= Execution time of straightforward code: 10 cycles/element

= Smart compiler (or human ©) schedule:

Cycle
loop: L.D FO,0(R1) ;F0=array element 1
DADDUI R1,R1,-8 ;decrement index 2
ADD.D F4,F0,F2 ;main computation 3
stall ;st depends on add 4
BNE R1,R2,1lo0p ;next iteration 5
S.D F4,8 (R1) ;store result 6

= Immediate offset of store was changed after reordering

= Execution time of scheduled code:
6 cycles/element — Speedup=1.7

= Of the 6 cycles, 3 are for actual computation (l.d, add.d, s.d),
2 are loop overhead (addi, bne), and 1 is a stall

Inf3 Computer Architecture - 2015-2016

how
where
. -

2 - whose
who

=

Next topic:

handling control hazards through branch prediction

Inf3 Computer Architecture - 2015-2016 8

Static Branch Prediction

= Compiler determines whether branch is likely to be taken or
likely to be not taken.

- How?
When is a branch likely to be taken? for (i=0;i<1000;i++)
{
x = a[i];
if (x==-1)

{
When is a branch likely to be NOT taken? break ;
}

process (x,1) ;

Inf3 Computer Architecture - 2015-2016

Static Branch Prediction

= Compiler determines whether branch is likely to be taken or
likely to be not taken.

= Decision is based on analysis or profile information

- 90% of backward-going branches are taken

- 50% of forward-going branches are not taken
- BTFN: “backwards taken, forwards not-taken”
- Used in ARC 600 and ARM 11

= Decision is encoded in the branch instructions themselves

- Uses 1 bit: 0 => not likely to branch, 1=> likely to branch
= Prediction may be wrong!

— Must kill instructions in the pipeline when a bad decision is made

- Speculatively issued instructions must not change processor
state

Inf3 Computer Architecture - 2015-2016 10

Recall: Control Hazards

= When a branch is executed, PC is not affected until the branch instruction
reaches the MEM stage.

= By this time 3 instructions have been fetched from the fall-through path.

| c1 | c2 | c3 | c4 | cS | cb | c/ | c8 | c9 | c10
| | |

BEQZ R1l, label IF

Kill instructions
in EX, DEC and IF

SUB R4, R2, R5

as they move
forwards

AND R6, R2, r7

OR R8, r2, R9

label:

XOR R10, R1l, R1l1l ¢ IF Reg lB Mem Reg

Inf3 Computer Architecture - 2015-2016 11

Dynamic Branch Prediction

Monitor branch behavior and learn

- Key assumption: past behavior indicative of future behavior

= Predict the present (current branch) using learned history

= |dentify individual branches by their PC or dynamic branch
history

= Predict:
— Outcome: taken or not taken
- Target: address of instruction to branch to

= Check actual outcome and update the history

= Squash incorrectly fetched instructions

Inf3 Computer Architecture - 2015-2016 12

Simplest dynamic predictor: 1-bit Prediction

= 1 bit indicating Taken (1) or Not Taken (0)

= Branch prediction buffers:
— Match branch PC during IF or ID stages

Branch PC | Outcome
0x135c4: add r1,r2,r3 0X135C8 0

v

0x135c8: bne r1,r0,n 0x147¢0 1

for (i=0;i<1000;i++)

{
= Incurs at least 2 mis-predictions per loop x = al[i];
if (x==-1) {
break;
}

s €C b)) <
Problem: “unstable” behavior process (x,1i) ;

Inf3 Computer Architecture - 2015-2016 =)

2-bit Branch Prediction

= |dea: add hysteresis

- Prevent spurious events from affecting the most likely branch outcome

= 2-bit saturating counter:

_ 00: do not take Branch PC utcomye
- 01: do not take 9 o
~ 10- take 0x147e0 11
- 11: take
for (i=0;i<1000;i++)
{
x = a[1i];
if (x==-1) {
break;
}
process (x,1) ;
}

Inf3 Computer Architecture - 2015-2016

2-bit Branch Prediction

Predictor states:

Predict taken

Taken

(10)

\ 4

Taken
Taken m
(11)
Not taken
Not taken

Not taken

(01)

Predict not taken Predict not taken
(00)
Taken

Not taken

Learns biased branches

N-bit predictor:

- Increment on Taken outcome and decrement on Not Taken outcome
- If counter>(2"-1)/2 then take, otherwise do not take
— Takes longer to learn, but sticks longer to the prediction

Inf3 Computer Architecture - 2015-2016 15

Example of 2-bit Branch Prediction

= Nested loop:

Loop1: ...

Loop2: ...
bne r1,r0,loop2

\/4

bne r2,r0,loop1

15t outer loop execution:

00 — predict not taken; actually taken — update to 01 (misprediction)
01 — predict not taken; actually taken — update to 10 (misprediction)
10 — predict taken; actually taken — update to 11

11 — predict taken; actually taken

11 — predict taken; actually not taken — update to 10 (misprediction)

Inf3 Computer Architecture - 2015-2016 16

Example Continued @

= 2nd outer loop execution onwards:

- 10 — predict taken; actually taken — update to 11
- 11 — predict taken; actually taken

- 11 — predict taken; actually not taken — update to 10 (misprediction)
= |n practice misprediction rates for 2-bit predictors with 4096 entries in
the buffer range from 1% to 18% (higher for integer applications than for
fp applications)

= Bottom-line: 2-bit branch predictors work very well for loop-intensive
applications

- n-bit predictors (n>2) are not much better
— Larger buffer sizes do not perform much better

Inf3 Computer Architecture - 2015-2016 17

Correlating Predictors

ot

’
“ "
< A
- o
~

e o

Dy

= 1- and 2-bit predictors exploit most recent

history of the current branch

= Realization: branches are correlated!

if (a == 2)
a=20;

if (b == 2)
b=20;

if (a '= b) {
..}

If both branches are taken,
the last branch definitely not taken

char sl = “Bob”

if (sl !'= NULL)
reverse str(sl)y

reverse str (char *£) ({
if (sl == NU
return;

sl definitely not Null
in this calling context

Inf3 Computer Architecture - 2015-2016 18

Correlating Predictors @

= 1- and 2-bit predictors exploit most recent
history of the current branch

= Realization: branches are correlated!

if (a == 2) char sl = “Bob”

a =0;
if (b == 2) if (sl '= NULL)

b=20; reverse str(sl)y
if (a '= b) {

.} reverse str(char *8) ({

if (sl == NU
return;

Idea: exploit recent history of other branches in prediction

Inf3 Computer Architecture - 2015-2016 19

Two-Level (or Correlating) Predictor

= Prediction depends on the context of the branch

= Context: history (T/NT) of the last N branches
- First level of the predictor
- Implemented as a shift register

= Prediction: 2-bit saturating counters

- Indexed with the “global” history
- Second level of the predictor

000..0 | oo | Pattern History
: 000..1 | 10 | Table (PHT)
1/1/0]... /1 00
Global History @ 1 11
Register GHR) 1.1 g

Inf3 Computer Architecture - 2015-2016 20

Dynamic Predictor Performance Comparison @

9% Accuracy

100
98
96
94
92
90
88
86
84
82
80

2-level correlating

4.92% 57%%

predictor with a

L 7% — 396% —m .
f':. s] 1.54%

Z— 15-bit global history

dod s‘pi fpp gee ésp eqn l

accuracy for the 2-bit counter scheme

2-level predictor improves accuracy by >4%

Inf3 Computer Architecture - 2015-2016

21

Does 4% accuracy improvement matter?

Assume branches resolve in stage 10

- Reasonable for a modern high-frequency processor

= 20% of instructions are branches
= Correctly-predicted branches have a O-cycle penalty (CPI=1)
= 2-bit predictor: 92% accuracy

= Z2-level predictor: 96% accuracy

2-bit predictor:

CPI=0.8 + 0.2 *(10*0.08 + 1*0.92) =1.114

2-level predictor
CPI=0.8+0.2*(10*0.04 + 1*0.96) = 1.072

Speedup(2-level over 2-bit): 4%

Inf3 Computer Architecture - 2015-2016 22

Branch Target Buffers (BTB)

Branch predictors tell whether the branch will be taken or not, but they
say nothing about the target of the branch

To resolve a branch early we need to know both the outcome and the
target

Solution: store the likely target of the branch in a table (cache) indexed by
the whole of the branch PC — BTB

Usually BTB is accessed in the IF stage and the branch predictor is
accessed soon after that.
(Aside: In the practical assignment, you will assume a perfect BTB, and a

branch predictor that predicts in the fetch stage. Also, branches are
resolved in the execute state.)

Inf3 Computer Architecture - 2015-2016 23

Complete Branch Prediction Logic @

Which direction earlier Direction predictor (2-bit counters)

branches went

taken? D—l
Global branch

history PC + inst size — Next Fetch

‘ Address
@G,
Counter » .

Address of the
current instruction

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

Source: Onur Mutlu, CMU

Inf3 Computer Architecture - 2015-2016 24

Branch Prediction with only BTB

IF stage Search BTB using
ID stage instruction PC
EXE stage l
Entry
No found Yes
| in BTB? l
Use target
Is this in BTB
No a taken Yes |
branch?
Contin.ue Add branch No Taken
execution to BTB branch?

Squash target;
remove entry
from BTB

Inf3 Computer Architecture - 2015-2016

Yes

Continue
execution

25

