
Inf3 Computer Architecture - 2015-2016

Handling Hazards

▪ Structural hazards
– Stalling: pipeline interlock
– Code scheduling

▪ Data hazards
– Stalling: pipeline interlock
– Forwarding
– Load delay

▪ Stalling: pipeline interlock
▪ Code scheduling: fill the load delay slot

▪ Control Hazards
– Early branch resolution
– Stalling: flushing the pipeline
– Delayed branch
– Predict non taken (or taken)
– Static branch prediction
– Dynamic branch prediction

1

Exceptions and Pipelining

▪ Recoverable exceptions is a challenge (e.g. pagefault,
arithmetic exception)
▪ Instructions before must commit
▪ Instruction after must be killed
▪ Instructions causing exception must be re-executed

with same operands
▪ Exceptions may overlap in pipeline, or even occur out-

of-order
▪ Handling of exception delayed until Instruction reaches last

stage.

2

Inf3 Computer Architecture - 2015-2016 3

Multicycle Operations

▪ Floating point operations take multiple cycles in EXE
▪ Assume a system with 1 int ALU, 1 FP/int multiplier, 1 FP adder, 1 FP/int

divider

MEM WBIDIF

EXE
int ALU

EXE
FP/int

multiply

EXE
FP add

EXE
FP/int
divide

Inf3 Computer Architecture - 2015-2016 4

Multicycle Operations

▪ Instruction latency: cycles to wait for the result of an instruction
– Usually the number of cycles for the execution pipeline minus 1
– e.g. 0 cycles for integer ALU since no wait is necessary

▪ Instruction initiation interval: time to wait to issue another
instruction of the same type
– Not equal to number of cycles, if multicycle operation is pipelined or

partially pipelined

▪ Examples:
– Integer ALU:  

1 EXE cycle → latency = 0; initiation interval = 1
– FP add, fully pipelined:  

4 EXE cycles → latency = 3; initiation interval = 1
– FP divide, not pipelined:  

25 EXE cycles → latency = 24; initiation interval = 25

Inf3 Computer Architecture - 2015-2016 5

Multicyle Operations: Handling Hazards

▪ Structural hazards can occur when functional unit not fully pipelined
(initiation interval > 1) → need to add interlocking

▪ RAW hazards become longer

▪ Possibly more than one register write per cycle → either add ports to
register file or treat conflict as a hazard and stall

▪ Possible hazards between integer and FP instructions → use separate
register files

▪ WAW hazards are possible → stall second instruction  
or prevent first instruction from writing

Inf3 Computer Architecture - 2015-2016 6

for (i=1000; i>0; i--)
x[i] = x[i] + s

loop: L.D F0,0(R1) ;F0=array element
 stall ;add depends on ld
 ADD.D F4,F0,F2 ;main computation
 stall ;st depends on add
 stall
 S.D F4,0(R1) ;store result
 DADDUI R1,R1,-8 ;decrement index
 stall ;bne depends on add
 BNE R1,R2,loop ;next iteration
 stall ;branch delay slot

Cycle

1

2

3

4

5

6

7

8

9

10

Loop Example

▪ Straightforward code and schedule:
– Assume F2 contains the value of s
– Load latency equals 1
– FP ALU latency 3 to another FP ALU and 2 to a store

Inf3 Computer Architecture - 2015-2016 7

▪ Execution time of straightforward code: 10 cycles/element

▪ Smart compiler (or human ☺) schedule:

▪ Immediate offset of store was changed after reordering
▪ Execution time of scheduled code:  

6 cycles/element → Speedup=1.7

▪ Of the 6 cycles, 3 are for actual computation (l.d, add.d, s.d),  
2 are loop overhead (addi, bne), and 1 is a stall

loop: L.D F0,0(R1) ;F0=array element
 DADDUI R1,R1,-8 ;decrement index
 ADD.D F4,F0,F2 ;main computation
 stall ;st depends on add
 BNE R1,R2,loop ;next iteration
 S.D F4,8(R1) ;store result

Cycle
1
2
3
4
5
6

Iteration Scheduling

Inf3 Computer Architecture - 2015-2016 8

Next topic:
handling control hazards through branch prediction

Inf3 Computer Architecture - 2015-2016

Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or
likely to be not taken.
– How?

When is a branch likely to be taken?

When is a branch likely to be NOT taken?

9

for(i=0;i<1000;i++)
{
 x = a[i];
 if (x==-1)
 {

break;
 }
 process(x,i);

}

Inf3 Computer Architecture - 2015-2016

Static Branch Prediction

▪ Compiler determines whether branch is likely to be taken or
likely to be not taken.

▪ Decision is based on analysis or profile information
– 90% of backward-going branches are taken
– 50% of forward-going branches are not taken
– BTFN: “backwards taken, forwards not-taken”
– Used in ARC 600 and ARM 11

▪ Decision is encoded in the branch instructions themselves
– Uses 1 bit: 0 => not likely to branch, 1=> likely to branch

▪ Prediction may be wrong!
– Must kill instructions in the pipeline when a bad decision is made
– Speculatively issued instructions must not change processor

state

10

Inf3 Computer Architecture - 2015-2016 11

Recall: Control Hazards

▪ When a branch is executed, PC is not affected until the branch instruction
reaches the MEM stage.

▪ By this time 3 instructions have been fetched from the fall-through path.

IF MemReg A
LU Reg

IF MemReg A
LU Reg

IF MemReg

A
LU Reg

IF MemReg
A
LU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

BEQZ R1, label

SUB R4, R2, R5

AND R6, R2, r7

OR R8, r2, R9
 :
 :

IF MemReg A
LU RegXOR R10, R1, R11

Kill instructions
in EX, DEC and IF

as they move
forwards

label:

Inf3 Computer Architecture - 2015-2016 12

Dynamic Branch Prediction

▪ Monitor branch behavior and learn
– Key assumption: past behavior indicative of future behavior

▪ Predict the present (current branch) using learned history

▪ Identify individual branches by their PC or dynamic branch
history

▪ Predict:
– Outcome: taken or not taken

– Target: address of instruction to branch to

▪ Check actual outcome and update the history

▪ Squash incorrectly fetched instructions

Inf3 Computer Architecture - 2015-2016 13

Simplest dynamic predictor: 1-bit Prediction

▪ 1 bit indicating Taken (1) or Not Taken (0)

▪ Branch prediction buffers:
– Match branch PC during IF or ID stages

▪ Incurs at least 2 mis-predictions per loop

Branch PC
0x135c8
0x147e0

…

Outcome
0
1

…

…
0x135c4: add r1,r2,r3
0x135c8: bne r1,r0,n
…

Problem: “unstable” behavior

for(i=0;i<1000;i++)
{
 x = a[i];
 if (x==-1){

break;
 }
 process(x,i);
}

Inf3 Computer Architecture - 2015-2016 14

2-bit Branch Prediction

▪ Idea: add hysteresis
– Prevent spurious events from affecting the most likely branch outcome

▪ 2-bit saturating counter:
– 00: do not take
– 01: do not take
– 10: take
– 11: take

Branch PC
0x135c8
0x147e0

…

Outcome
10
11
…

for(i=0;i<1000;i++)
{
 x = a[i];
 if (x==-1){

break;
 }
 process(x,i);
}

Inf3 Computer Architecture - 2015-2016 15

2-bit Branch Prediction

▪ Predictor states:

▪ Learns biased branches
▪ N-bit predictor:

– Increment on Taken outcome and decrement on Not Taken outcome
– If counter>(2n-1)/2 then take, otherwise do not take
– Takes longer to learn, but sticks longer to the prediction

Predict taken
(10)

Predict not taken
(01)

Taken

Taken

Predict taken
(11)

Predict not taken
(00)

Not taken

Taken

Not taken
Taken

Not taken

Not taken

Inf3 Computer Architecture - 2015-2016 16

Example of 2-bit Branch Prediction

▪ Nested loop:

▪ 1st outer loop execution:
– 00 → predict not taken; actually taken → update to 01 (misprediction)
– 01 → predict not taken; actually taken → update to 10 (misprediction)
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10 (misprediction)

Loop1: …
 …
Loop2: …
 bne r1,r0,loop2
 …
 bne r2,r0,loop1

Inf3 Computer Architecture - 2015-2016 17

Example Continued

▪ 2nd outer loop execution onwards:
– 10 → predict taken; actually taken → update to 11
– 11 → predict taken; actually taken
– …
– 11 → predict taken; actually not taken → update to 10 (misprediction)

▪ In practice misprediction rates for 2-bit predictors with 4096 entries in
the buffer range from 1% to 18% (higher for integer applications than for
fp applications)

▪ Bottom-line: 2-bit branch predictors work very well for loop-intensive
applications

– n-bit predictors (n>2) are not much better
– Larger buffer sizes do not perform much better

Inf3 Computer Architecture - 2015-2016

Correlating Predictors

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: branches are correlated!

18

if (a == 2)
 a = 0;
if (b == 2)
 b = 0;
if (a != b) {
 …}

If both branches are taken,
the last branch definitely not taken

char s1 = “Bob”
...
if (s1 != NULL)
 reverse_str(s1);

reverse_str(char *s) {
 if (s1 == NULL)
 return;
 ...

s1 definitely not Null  
in this calling context

Inf3 Computer Architecture - 2015-2016

Correlating Predictors

▪ 1- and 2-bit predictors exploit most recent
history of the current branch

▪ Realization: branches are correlated!

19

if (a == 2)
 a = 0;
if (b == 2)
 b = 0;
if (a != b) {
 …}

char s1 = “Bob”
...
if (s1 != NULL)
 reverse_str(s1);

reverse_str(char *s) {
 if (s1 == NULL)
 return;
 ...

Idea: exploit recent history of other branches in prediction

Inf3 Computer Architecture - 2015-2016

Two-Level (or Correlating) Predictor

▪ Prediction depends on the context of the branch
▪ Context: history (T/NT) of the last N branches

– First level of the predictor
– Implemented as a shift register

▪ Prediction: 2-bit saturating counters
– Indexed with the “global” history
– Second level of the predictor

20

1 1 0 1. . .

00
10
00

01

…
Global History  
Register GHR)

000 .. 0
000 .. 1

11
…

110 .. 1

111 .. 1

Pattern History
Table (PHT)

Last resolved
branch

Inf3 Computer Architecture - 2015-2016

Dynamic Predictor Performance Comparison

2-level predictor improves accuracy by >4%
21

2-level correlating
predictor with a
15-bit global history

Inf3 Computer Architecture - 2015-2016

Does 4% accuracy improvement matter?

22

▪ Assume branches resolve in stage 10
– Reasonable for a modern high-frequency processor

▪ 20% of instructions are branches
▪ Correctly-predicted branches have a 0-cycle penalty (CPI=1)
▪ 2-bit predictor: 92% accuracy
▪ 2-level predictor: 96% accuracy

2-bit predictor:
CPI = 0.8 + 0.2 * (10*0.08 + 1*0.92) = 1.114

2-level predictor
CPI = 0.8 + 0.2 * (10*0.04 + 1*0.96) = 1.072

Speedup(2-level over 2-bit): 4%

Inf3 Computer Architecture - 2015-2016 23

Branch Target Buffers (BTB)

▪ Branch predictors tell whether the branch will be taken or not, but they
say nothing about the target of the branch

▪ To resolve a branch early we need to know both the outcome and the
target

▪ Solution: store the likely target of the branch in a table (cache) indexed by
the whole of the branch PC → BTB

▪ Usually BTB is accessed in the IF stage and the branch predictor is
accessed soon after that.

▪ (Aside: In the practical assignment, you will assume a perfect BTB, and a
branch predictor that predicts in the fetch stage. Also, branches are
resolved in the execute state.)

Inf3 Computer Architecture - 2015-2016

Complete Branch Prediction Logic

Source: Onur Mutlu, CMU

24

Inf3 Computer Architecture - 2015-2016 25

Branch Prediction with only BTB

Search BTB using
instruction PC

Entry
found

in BTB?

Is this
a taken
branch?

Use target
in BTB

Add branch
to BTB

Squash target;
remove entry

from BTB

Continue
execution

Taken
branch?

Continue
execution

IF stage

ID stage

EXE stage

Yes

Yes

Yes

No

No

No

