
Inf3 Computer Architecture - 2014-2015 1

Dynamic Scheduling

!  Pipelining: Issue instructions in every cycle (CPI → 1)

!  Compiler scheduling (static scheduling) reduces impact of
dependences
–  Increased compiler complexity, especially when attempting

global scheduling (across BB’s)

–  Limited information at compile time (branch outcomes,
memory addresses, cache misses)

–  Not portable to different pipeline implementations

!  Hardware scheduling so far: in-order instruction execution
–  Instructions after a stalled instruction must wait even if

independent

Inf3 Computer Architecture - 2014-2015 2

!  Example:

–  DIV.D is a long latency operation
–  ADD.D depends on DIV.D but SUB.D does not

!  Solution: out-of-order execution
–  Detect dependence of ADD.D and block it
–  Detect that SUB.D is not dependent and execute it
–  Now SUB.D executes before ADD.D even though it comes

after it in program order
–  Hardware must be able to look ahead of blocked instructions
–  Multiple functional units can be effectively used

DIV.D F0,F2,F4 ;F0=F2/F4
ADD.D F10,F0,F8 ;F10=F0+F8
SUB.D F12,F8,F14 ;F12=F8-F14

Dynamic Scheduling: Main Idea

Inf3 Computer Architecture - 2014-2015 3

Terminology

!  Instruction fetch: fetch instruction from memory
!  Instruction issue: decode instruction, check for structural

hazards, and send to execution units
!  Instruction execution: execute instruction after registers

are read once dependences are cleared
!  Instruction completion (or retire or commit): finish

instruction and update processor state
!  Some combinations are possible:

–  In-order issue, execution and completion
–  In-order issue and out-of-order execution and in-order

completion
–  Out-of-order issue, execution and completion

Dependences

!  Read after Write - RAW (Flow, True)
–  MUL R3, R1,R2
–  DADD R5, R3, R4

!  Write after Read – WAR (Anti, Name)
–  MUL R3, R1, R2
–  DADD R1, R5, R6

!  Write after Write – WAW (Output, Name)
–  MUL R3, R1, R2
–  DADD R3, R4, R5

Inf3 Computer Architecture - 2014-2015 4

Inf3 Computer Architecture - 2014-2015 5

Dynamic Scheduling 1: Scoreboarding

!  Handles all RAW, WAR, and WAW with proper stalls, but
allows independent instructions to proceed

!  Step 1: Issue (part of original ID stage)
–  Issue instruction to functional unit iff functional unit is free

and no earlier instruction writes to the same destination
register (WAW)

!  Step 2: Read operands (part of original ID stage)
–  Wait until source registers become available from earlier

instructions through register file (RAW)
!  Step 3: Execute (original EXE stage)

–  Execute instruction and notify scoreboard when done
!  Step 4: Write result (original WB stage)

–  Wait until earlier instructions read operands before writing to
register file (WAR)

Inf3 Computer Architecture - 2014-2015 6

Scoreboard Organization

!  Instruction status: either one of the four steps of the
instruction operation (Issue, Read Op, Execute, Write)

!  Functional unit status:
–  Busy – functional unit is being used
–  Op – type of operation to be performed (e.g., add, sub, etc.)
–  Fi – destination register
–  Fj, Fk – source registers
–  Qj, Qk – functional units producing Fj and Fk
–  Rj, Rk – read flag, indicates if Fj and Fk are ready but not yet read.

Set to “no” after operands are read.

!  Register result status: indicates which functional unit will write
the register next (one per register), and also reserves register
thereby detecting WAW hazards.

Scoreboarding Pipeline Control

Inf3 Computer Architecture - 2014-2015 7

Read
operands
Execution
complete

Instruction
status

Write result

Issue

Bookkeeping

Rj← No; Rk← No

∀f(if Qj(f)=FU then Rj(f)← Yes);
∀f(if Qk(f)=FU then Rj(f)← Yes);

Result(Fi(FU))← 0; Busy(FU)← No

Busy(FU)← yes; Op(FU)← op;
Fi(FU)← `D’; Fj(FU)← `S1’;

Fk(FU)← `S2’; Qj← Result(‘S1’);
Qk← Result(`S2’); Rj← not Qj;
Rk← not Qk; Result(‘D’)← FU;

Rj and Rk

Functional unit
done

Wait until

∀f((Fj(f)!=Fi(FU)
or Rj(f)=No) &
(Fk(f)!=Fi(FU)

or
Rk(f)=No))

Not busy (FU)
and not result(D) WAW

WAR

Inf3 Computer Architecture - 2014-2015 8

!  Instruction sequence:

!  Latencies:
–  Integer → 1 cycle
–  FP add → 2 cycles
–  FP multiply → 10 cycles
–  FP divide → 40 cycles

!  Functional units: 1 integer (also for ld/st), 1 FP
adder, 2 FP multipliers, 1 FP divider

L.D F6, 34(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F6, F2
DIV.D F10, F0, F6
ADD.D F6, F8, F2

Scoreboard Example

Scoreboard example – cycle 1

Inf3 Computer Architecture - 2014-2015 9

Issue
LD #1

Scoreboard example – cycle 2

Inf3 Computer Architecture - 2014-2015 10

LD #2 can’t issue
since integer unit
is busy.
MULT can’t issue
because we
require in-order
issue.

Scoreboard example – cycle 4

Inf3 Computer Architecture - 2014-2015 11

Scoreboard example – cycle 5

Inf3 Computer Architecture - 2014-2015 12

Issue LD #2 since
integer unit is now
free.

Scoreboard example – cycle 6

Inf3 Computer Architecture - 2014-2015 13

Issue MULT.

Scoreboard example – cycle 7

Inf3 Computer Architecture - 2014-2015 14

MULT can’t read its
operands (F2)
because LD #2
hasn’t finished.

Scoreboard example – cycle 8

Inf3 Computer Architecture - 2014-2015 15

DIVD issues.
MULT and SUBD
both waiting for F2.
LD #2 writes F2.

Scoreboard example – cycle 9

Inf3 Computer Architecture - 2014-2015 16

Now MULT and
SUBD can both
read F2.

Scoreboard example – cycle 11

Inf3 Computer Architecture - 2014-2015 17

ADDD can’t start
because add unit is
busy.

Scoreboard example – cycle 12

Inf3 Computer Architecture - 2014-2015 18

SUBD finishes.
DIVD waiting for F0.

Scoreboard example – cycle 13

Inf3 Computer Architecture - 2014-2015 19

ADDD issues.

Scoreboard example – cycle 14

Inf3 Computer Architecture - 2014-2015 20

Scoreboard example – cycle 16

Inf3 Computer Architecture - 2014-2015 21

Scoreboard example – cycle 17

Inf3 Computer Architecture - 2014-2015 22

ADDD can’t write
because of DIVD
WAR!

Scoreboard example – cycle 19

Inf3 Computer Architecture - 2014-2015 23

MULT completes
execution. 19

Scoreboard example – cycle 20

Inf3 Computer Architecture - 2014-2015 24

MULT writes.

Scoreboard example – cycle 21

Inf3 Computer Architecture - 2014-2015 25

DIVD loads
operands

Scoreboard example – cycle 22

Inf3 Computer Architecture - 2014-2015 26

Now ADDD can
write since WAR
removed.

Scoreboard example – cycle 61

Inf3 Computer Architecture - 2014-2015 27

DIVD completes
execution

Scoreboard example – cycle 62

Inf3 Computer Architecture - 2014-2015 28

Inf3 Computer Architecture - 2014-2015 29

Scoreboard Summary

!  Dynamically schedules instructions

!  Forces instructions to wait on RAW, WAR, WAW
dependences and structural hazards

!  First used in the CDC 6600 in 1964 and yielded
performance improvements of 1.7 to 2.5 times

!  Hardware cost (size) of scoreboard equivalent to one of
the functional units

Inf3 Computer Architecture - 2014-2015 30

Scoreboard Limitations

!  No forwarding – read from register

!  Structural hazards – stall at issue

!  WAW hazard – stall at issue

!  WAR hazard – stall at write

Next lecture: Dynamic scheduling using Tomasulo’s algorithm
–  Avoids WAW & WAR via register renaming
–  Supports forwarding using a centralized result bus

