
Inf3 Computer Architecture - 2014-2015 1

Virtual Memory!

Motivation:!
!  Each process would like to see its own, full, address space!
!  Clearly impossible to provide full physical memory for all

processes!
!  Processes may define a large address space but use only a

small part of it at any one time!
!  Processes would like their memory to be protected from

access and modification by other processes!
!  The operating system needs to be protected from

applications!
!

Inf3 Computer Architecture - 2014-2015 2

Virtual Memory!

Basic idea:!
!  Each process has its own Virtual Address Space, divided

into fixed-sized pages!
!  Virtual pages that are in use get mapped to pages of

physical memory (called page frames).!
–  Virtual memory: pages!
–  Physical memory: frames !

!  Virtual pages not recently used may be stored on disk!
!  Extends the memory hierarchy out to the swap partition

of a disk!

Inf3 Computer Architecture - 2014-2015 3

Physical memory
0

4K

8K

12K

16K

20K

Virtual and Physical Memory!

!  Example 4K page size!

!  Process 1 has pages A,
B, C and D!

!  Page B is held on disk!

!  Process 2 has pages X,
Y, Z!

!  Page Z is held on disk!

!  Process 1 cannot
access pages X, Y, Z!

!  Process 2 cannot
access page A, B, C, D!

!  O/S can access any
page (full privileges)! Swap disk

page
swapping

B

A

B

C

D

Virtual memory
(process 1)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

A

C

D

Y

X

X

Y

Z

Virtual memory
(process 2)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

Z

Inf3 Computer Architecture - 2014-2015 4

Physical memory
0

4K

8K

12K

16K

20K

Sharing memory using Virtual Aliases!

!  Process 1 and Process 2
want to share a page of
memory!

!  Process 1 maps virtual page
A to physical page P!

!  Process 2 maps virtual page
Z to physical page P!

!  Permissions can vary
between the sharing
processors.!

!  O/S can still access any
page (full privileges)!

!  Note: Process 1 can also
map the same physical
page at multiple virtual
addresses !!! Swap disk

page
swapping

A

B

C

Virtual memory
(process 1)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

P

Q

Z

Virtual memory
(process 2)

0

4K

8K

12K

16K

20K

24K

28K

32K

36K

36K

P Shared page!

Q Aliased within one process!

Inf3 Computer Architecture - 2014-2015 5

Typical Virtual Memory1 Parameters!

!  Virtual Memory miss is called a page fault!
!  Page size is usually fixed, but some systems use variable size segments!

H&P 5/e
Fig. B.20

parameter L1 cache memory

block/page 16-128 bytes 4KB-4MB

hit time 1-3 cycles 100-200 cycles

miss penalty 8-200 cycles 1M-10M cycles

 (access time) 6-160 cycles 800K-8M cycles

 (transfer time) 2-40 cycles 200K-2M cycles

miss rate 0.1-10% 0.00001-0.001%

size 4KB-64KB 128MB-128GB

1 Note: these parameters are due to a combination of physical 
 memory organization and virtual memory implementation"

Inf3 Computer Architecture - 2014-2015 6

Virtual Memory Policies!

!  Block replacement: choosing a page frame to reuse!
–  Minimize misses (page faults) → LRU policy!
–  Minimize write backs to disk → give priority to non-modified pages!

!  Write strategy: policy adopted on a write!
–  Write-through would mean writing the cache block back to disk whenever

the page is updated in main memory → not practical!
–  Write-back policy is always used (with Dirty or modified bit in page table)!

!  Some systems use one Dirty bit per block in the page to minimize data writes
back to disk!

!  Inclusivity:!
–  Inclusive would mean having a copy of all used pages in disk → too

expensive!
–  Memory and Disk are non-inclusive in all systems!

Inf3 Computer Architecture - 2014-2015 7

Virtual Memory Policies!

!  Block placement: location of page in memory!
–  More freedom → lower miss rates, higher hit and miss penalties!
–  Memory access time is already high and memory miss penalty (disk

access time) is huge ⇒ must minimize miss rates!
–  Full associativity → virtual page can be located in any page frame!

!  No conflict misses!
!  Important to reduce time to find a page in memory (hit time)!

–  To place new pages in memory, OS maintains a list of free frames!

!  Block placement may be constrained by use of translated virtual
address bits when indexing the cache (see later)!

Inf3 Computer Architecture - 2014-2015 8

Virtual Memory Policies!

!  Block identification: finding the correct page frame!
–  Assigning tags to memory page frames and comparing tags is impractical!
–  OS maintains a table that maps all virtual pages to physical page frames:

Page Table!
–  Table is updated with a new mapping every time a virtual page is

allocated a page frame!
–  Table is accessed on a memory request to translate virtual to physical

address → inefficient! !
!  Solution: cache translations (more later)!

–  The number of entries in the table is the number of virtual pages → many! !
!  e.g., 4KB pages " 220=1M entries for a 32b address space; 252 entries for a

64b address space!
!  Solution: hash virtual addresses to avoid maintaining a map from each virtual

page (many) to physical frame (few). Resulting structure is inverted page table.!
–  One Page Table per process!

Physical Page Number Permiss. Valid Dirty

Inf3 Computer Architecture - 2014-2015 9

Page Tables and Address Translation!

!  Page table contains a translation
for all virtual pages!

!  One page table for each process,
and one for the system!

!  Each page has specific access
permissions!

–  Read, Write, Execute!
!  Bit indicates if page is on disk, in

which case Physical Page Number
indicates location within swap file!

!  “Dirty” bit indicates if there were
any writes to the page!

!  Page table can be very large, so is
often itself stored in virtual
memory of the OS, and large parts
may be swapped out!

!  CPU needs a cache of recently
used Page Table Entries.!

Page Table Address Register

Physical Page Number PageOffset

31 0 11 12

Page
Table

Virtual Page Number PageOffset

31 0 11 12
Virtual
Address

Physical
Address

1 r-w-x

Disk?

0 0

Inf3 Computer Architecture - 2014-2015 10

Translation Look-aside Buffers!

!  Typically a small, fully-
associative cache of Page Table
Entries (PTE)!

!  Tag given by VPN for that PTE!
!  PPN taken from PTE!
!  Valid bit required!
!  D bit (dirty) indicates whether

page has been modified!
!  R, W, X bits indicate Read, Write

and Execute permission!
!  Permissions are checked on every

memory access!
!  Physical address formed from

PPN and Page Offset!
!  TLB Exceptions:!

–  TLB miss (no matching entry)!
–  Privilege violation!

!  Often separate TLBs for
Instruction and Data references!

Virtual Page Number PageOffset

31 0 11 12
Virtual
Address

Physical Page Number V Tag D R W X

=

=

=

=

=

TLB hit

Physical Page Number PageOffset

31 0 11 12 Physical
Address

Inf3 Computer Architecture - 2014-2015 11

How to address a cache in a virtual-memory system!

Option 1: physically-addressed caches → perform address
translation before cache access!

–  Hit time is increased to accommodate translation #!

CPU

L1 cache

tag data

?

Main
memory address

translation

Virtual address:
0x0004

Physical address:
0xc104

Inf3 Computer Architecture - 2014-2015 12

Option 2: virtually-addressed caches → perform address
translation after cache access if miss!

–  Hit time does not include translation $!
–  Aliases #!

CPU

L1 cache

tag data

?

Main
memory address

translation

How to address a cache in a virtual-memory system!

Virtual address:
0x0004

Physical address:
0xc104

Inf3 Computer Architecture - 2014-2015 13

Problems with virtual aliases and caches!

!  Virtually tagged data cache problems:!
–  A program may use different virtual addresses pointing to the same

physical address!
!  Two copies could exist in the same data cache!
!  Writing to copy 1 would not be reflected in copy 2!
!  Reading copy 2 would get stale data!

–  Does not provide a coherent view of memory!
–  Must be able to distinguish across different processes!

!  Flush cache on context switch or add process ID to each tag!
!  Solution:!

–  Use Physical address tags!
–  Aliases have same physical address, therefore same tag!
–  Only one copy exists in each cache!

!  Implications for CPU-cache interactions:!
–  Must translate addresses before cache tag check!
–  May still be able to index cache using non-translated low-order

address bits under certain circumstances.!

Inf3 Computer Architecture - 2014-2015 14

VI-PT: translating in parallel with L1-$ access!

!  Access TLB and L1-$ in parallel!
!  Requires that L1-$ index be obtained from the non-translated bits

of the virtual address.!
!  This constraint in the number of bits available for the index limits

the size of the cache!!
31 0 11 12

Virtual
Address

Virtual Page Number
PageOffset

Offset Index

31 0 11 12 4 5

TLB
L1-$

4 KB D-M

32-byte line

TLB hit

IMPORTANT:
If the cache Index
extends beyond bit
11, into the
translated part of the
address, then
translation must take
place before the
cache can be
indexed

Tag

Comparison

Cache hit

Inf3 Computer Architecture - 2014-2015 15

Coping with large VI-PT caches!

!  Multi-way caches: multiple blocks in the same set!
!  Larger page size: more bits available for the index!
!  Rely on page allocator in the O/S to allocate pages such that the

translation of index bits would always be an identity relation!
–  Hence, if virtual address A translates to physical address P, then  

Page Allocator must guarantee that: V[11] == P[11]!
–  This approach is referred to as “page coloring”.!

!  Check other potential sets for aliases on a miss!
–  E.g., AMD Athlon: 64KB 2-way cache w/ 4KB pages " on a miss, 7 add’l

cycles to check for aliases in other sets!

Cache addressing Cache tag bits Offset Index

31 0 12 13 4 5

31 0 11 12

Virtual Page Number Page offset Virtual addressing

Any translated bit used to index the cache must be identical
in both the Virtual and Physical addresses!

Inf3 Computer Architecture - 2014-2015 16

Summary: how to address a cache!

!  VI-VT : Virtually indexed, virtually tagged!
–  L1-$ indexed with virtual address, before translation, tag contains virtual

address!
–  Con: Cannot distinguish virtual aliases or synonyms in cache!
–  Pro: Only perform TLB lookup on L1-$ miss!

!  PI-PT : Physically indexed, physically tagged!
–  Translation first; then cache access!
–  Con: Translation occurs in sequence with L1-$ access – high latency!

!  VI-PT : Virtually indexed, physically tagged!
–  L1-$ indexed with virtual address, or often just the un-translated bits!
–  Translation must take place before tag can be checked!
–  Con: Translation must take place on every L1-$ access!
–  Pro: No aliases in the cache; works with cache-coherent shared memory!

!  PI-VT : Physically indexed, virtually tagged!
–  Not interesting!

