
Inf3 Computer Architecture - 2014-2015 2

Cache Performance!

!  Memory system and processor performance:!

!  Improving memory hierarchy performance:!
–  Decrease hit time!
–  Decrease miss rate!
–  Decrease miss penalty!

CPU time = IC x CPI x Clock time

CPI = CPIld/st x + CPIothers x
IC

ICld/st

IC

ICothers

CPIld/st = Pipeline time + Average memory access time (AMAT)

AMAT= Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Cache Performance – example problem!

Assume we have a computer where the CPI is 1
when all memory accesses hit in the cache. Data
accesses (ld/st) represent 50% of all instructions.
If the miss penalty is 25 clocks and the miss rate is
2%, how much faster would the computer be if all
instructions were cache hits?!

! ! ! ! ! [H&P 5th ed, B.1]!

Inf3 Computer Architecture - 2014-2015 3

Inf3 Computer Architecture - 2014-2015 4

Inf3 Computer Architecture - 2014-2015 5

Reducing Cache Miss Rates!

Cache miss classification: the “three C’s”!
!  Compulsory misses (or cold misses): when a block is accessed

for the first time!
!  Capacity misses: when a block is not in the cache because it

was evicted because the cache was full!
!  Conflict misses: when a block is not in the cache because it

was evicted because the cache set was full!
–  Conflict misses only exist in direct-mapped or set-associative caches!
–  In a fully associative cache, all non-compulsory misses are capacity misses!

Inf3 Computer Architecture - 2014-2015 6

Cache Misses vs. Cache Size!

H&P
Fig. 5.15 Direct mapped 4-way set associative

!  Miss rates are very small in practice (caching is effective!)!
!  Miss rates decrease significantly with cache size!

–  Rule of thumb: miss rates change in proportion to √ of cache size  
e.g., 2x cache " √2 fewer misses!

!  Miss rates decrease with set-associativity because of reduction in
conflict misses!

0

0.02

0.04

0.06

0.08

0.1

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

M
is

s
ra

te

Cache size

Conflict
Capacity
Cold

0

0.02

0.04

0.06

0.08

0.1

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

M
is

s
ra

te

Cache size

Conflict
Capacity
Cold

Inf3 Computer Architecture - 2014-2015 7

Reducing Cold Miss Rates!

Technique 1: Large block size!
–  Principle of spatial locality → other data in the block likely to be used soon!
–  Reduce cold miss rate!
–  May increase conflict and capacity miss rate for the same cache size (fewer

blocks in cache)!
–  Increase miss penalty because more data has to be brought in each time!
–  Uses more memory bandwidth!

Inf3 Computer Architecture - 2014-2015 8

Cache Misses vs. Block Size!

!  Small caches are very sensitive to block size!
!  Very large blocks (> 128B) never beneficial!
!  64B is a sweet spot " common choice in today’s processors!

H&P
Fig. 5.16

0
1
2
3
4
5
6
7
8
9

10

16B 32B 64B 128B 256B

M
is

s
ra

te
 (%

)

Block size

4KB
16KB
64KB
256KB

Inf3 Computer Architecture - 2014-2015 9

Reducing Cold Miss Rates!

Technique 2: Prefetching!
–  Idea: bring into the cache ahead of time data or instructions that are likely

to be used soon!
–  Reduce cold misses!
–  Uses more memory bandwidth!
–  May increase conflict and capacity miss rates (cache pollution)!

!  Can use a prefetch buffer to avoid polluting the cache !
–  Does not increase miss penalty (prefetch is handled after main cache

access is completed)!

Inf3 Computer Architecture - 2014-2015 10

Prefetching!

!  Hardware prefetching: hardware automatically prefetches cache blocks
on a cache miss!
–  No need for extra prefetching instructions in the program!
–  Effective for regular accesses, such as instructions!
–  E.g., next blocks prefetching, stride prefetching!

!  Software prefetching: compiler inserts instructions at proper places in
the code to trigger prefetches!
–  Requires new IS instructions for prefetching (nonbinding prefetch)!
–  Adds instructions to compute the prefetching addresses and to perform

the prefetch itself (prefetch overhead)!
–  E.g., data prefetching in loops, linked list prefetching!

!

Inf3 Computer Architecture - 2014-2015 11

Software Prefetching!

!  E.g., prefetching in loops: Brings the next required block, two
iterations ahead of time (assuming each element of x is 4-bytes long
and the block has 64 bytes).!

!  E.g, linked-list prefetching: Brings the next object in the list!

for (i=0; i<=999; i++) {
 if (i%16 == 0)
 prefetch(x[i+32]);
 x[i] = x[i] + s;
}

for (i=0; i<=999; i++) {
 x[i] = x[i] + s;
}

while (student) {
 student->mark = rand();
 student = student->next;
}

while (student) {
 prefetch(student->next);
 student->mark = rand();
 student=student->next;
}

Inf3 Computer Architecture - 2014-2015 12

Reducing Conflict Miss Rates!

Technique 3: High associativity caches!
–  More options for block placement → fewer conflicts!
–  Reduce conflict miss rate!
–  May increase hit access time because tag match takes longer!
–  May increase miss penalty because replacement policy is more involved!

Inf3 Computer Architecture - 2014-2015 13

Cache Misses vs. Associativity!

!  Small caches are very sensitive to associativity!
!  In all cases more associativity decreases miss rate, but little

difference between 4-way and fully associative!

0

0.02

0.04

0.06

0.08

0.1

0.12

1-way 2-way 4-way fully

Associativity

M
is

s
ra

te

4KB
16KB
64KB
512KB

Inf3 Computer Architecture - 2014-2015 14

Reducing Conflict Miss Rates!

Technique 4: Compiler optimizations!
–  E.g., merging arrays: may improve spatial locality if the fields are used

together for the same index!

!
–  E.g., loop fusion: improves temporal locality!

int val[size];
int key[size];

struct valkey{
 int val;
 int key;
};
Struct valkey merged_array[size];

for (i=0; i<1000; i++)
 A[i] = A[i]+1;
for (i=0; i<1000; i++)
 B[i] = B[i]+A[i];

for (i=0; i<1000; i++) {
 A[i] = A[i]+1;
 B[i] = B[i]+A[i];
}

Inf3 Computer Architecture - 2014-2015 15

Reducing Conflict Miss Rates!

–  E.g., blocking: change row-major and column-major array distributions to
block distribution to improve spatial and temporal locality!

for (i=0; i<5; i++)
 for (j=0; j<5; j++) {
 r=0;
 for (k=0; k<5; k++) {
 r=r+y[i][k]*z[k][j];
 x[i][j]=r;
 }

// matrix multiplication

i=0;j=0;0<k<5

i=0;j=1;0<k<5

x: y: z:

i=1;j=0;0<k<5

…

Poor spatial and temporal locality Poor temporal locality

Inf3 Computer Architecture - 2014-2015 16

Reducing Conflict Miss Rates – Loop Blocking or Tiling!

for (jj = 0; jj < 5; jj = jj+2)
 for (kk = 0; kk < 5; kk = kk+2)
 for (i = 0; i < 5; i++)
 for (j = jj; j < min(jj+2-1,5); j++)
 { r = 0;
 for (k = kk; k < min(kk+2-1,5); k++)
 r = r + y[i][k]*z[k][j];
 x[i][j]= x[i][j] + r;
 }

jj=0;kk=0;i=0;j=0;0<k<1
jj=0;kk=0;i=0;j=1;0<k<1

x: y: z:

jj=0;kk=0;i=1;j=0;0<k<1

Better temporal locality

Inf3 Computer Architecture - 2014-2015 17

Cache Performance II!

!  Memory system and processor performance:!

!  Improving memory hierarchy performance:!
–  Decrease hit time!
–  Decrease miss rate (block size, prefetching, associativity, compiler)!
–  Decrease miss penalty!

CPU time = IC x CPI x Clock time

Avg. mem. time = Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Inf3 Computer Architecture - 2014-2015 18

Reducing Cache Miss Penalty!

Technique 1: Victim caches!
–  (Can also considered to reduce miss rate) !
–  Very small cache used to capture evicted lines from cache!
–  In case of cache miss the data may be found quickly in the victim cache!
–  Typically 8-32 entries, fully-associative!
–  Access victim cache in series or in parallel with main cache. Trade-off?!

CPU

L1 cache

tag data

Victim cache
tag data

?

Memory address

?

Main
memory

Inf3 Computer Architecture - 2014-2015 19

Reducing Cache Miss Penalty!

Technique 2: giving priority to reads over writes!
–  The value of a read (load instruction) is likely to be used soon, while a write

does not affect the processor!
!  Key insight: writes are “off the critical path” and their latency doesn’t usually

matter. Thus, don’t stall for writes!!
–  Idea: place write misses in a write buffer, and let read misses overtake writes!

!  Flush the writes from the write buffer when pipeline is idle or when buffer full!
–  Reads to the memory address of a pending write in the buffer now become

hits in the buffer:!

1. write miss goes
into write buffer

sw 512(r0), r3
…
lw r2, 512(0)

memory
address value

512 R[r3]

… …

… …
2. read hits in the write buffer
and gets the value from the
previous write

write buffer

Inf3 Computer Architecture - 2014-2015 20

Reducing Cache Miss Penalty!

Technique 3: early restart and critical word first!
–  On a read miss, processor will need just the loaded word (or byte) very soon,

but processor has to wait until the whole block is brought into the cache!
–  Early restart: as soon as the requested word arrives in the cache, send it to

the processor and then continue reading the rest of the block into the cache!

CPU

L1 cache

tag data

?

Main
memory

lw r2, 3(0)
0x0003

01 02 03

Cache block
00

03

04 … 05 … 06 …

Inf3 Computer Architecture - 2014-2015 21

Reducing Cache Miss Penalty!

Technique 3: early restart and critical word first!
–  On a read miss processor will need just the loaded word (or byte) very soon,

but processor has to wait until the whole block is brought into the cache!
–  Early restart: as soon as the requested word arrives in the cache, send it to

the processor and then continue reading the rest of the block into the cache!
–  Critical word first: get the requested word first from the memory, send it

asap to the processor and then continue reading the rest of the block into
the cache!

CPU

L1 cache

tag data

?

Main
memory

lw r2, 3(0)
0x0003

03

Cache block

03

00 … 01 … 02 … 04 …

Inf3 Computer Architecture - 2014-2015 22

Reducing Cache Miss Penalty!

Technique 4: non-blocking (or lockup-free) caches!
–  Non-blocking caches: other memory instructions can overtake a

cache miss instruction!
!  Cache can service multiple hits while waiting on a miss: “hit under miss”!
!  More aggressive: cache can service multiple hits while waiting on multiple

misses: “miss under miss” or “hit under multiple misses”!
–  Cache and memory must be able to service multiple requests

concurrently!
!  Desirable in the context of dynamically scheduled (or out-of-order)

processors, covered later in the semester!
–  Must keep track of multiple outstanding memory operations!
–  Increased hardware complexity!

Inf3 Computer Architecture - 2014-2015 23

Non-blocking Caches!

H&P
Fig. 5.23

!  Significant improvement from small degree of outstanding memory
operations!

!  Some applications benefit from large degrees!

0

20

40

60

80

100

sw
im

tom
ca

tv

fpp
pp

su
2c

or

hy
dr

o2
d

mdlj
sp

2

na
sa

7

do
du

c

wav
e5

ea

r

mdlj
dp

2

alv
inn

sp
ice

2g
6

or
a

xli
sp

es
pr

es
so

co
mpr

es
s

eq
nto

tt

%
 o

f a
ve

ra
ge

 m
em

or
y

st
al

l t
im

e

as
 s

ee
n

by
 a

 b
lo

ck
in

g
ca

ch
e

Benchmark

hit under 1 miss hit under 2 misses hit under 64 misses

Inf3 Computer Architecture - 2014-2015 24

Reducing Cache Miss Penalty!

Technique 5: second level caches (L2)!
–  Gap between main memory and L1 cache speeds is increasing!

–  L2 makes main memory appear to be faster if it captures most of the L1
cache misses!
!  L1 miss penalty becomes L2 hit access time if hit in L2!
!  L1 miss penalty higher if miss in L2!

–  L2 considerations:!
!  256KB – 1MB capacity!
!  ~10 cycles access time!
!  Higher associativity (e.g., 8-16 ways) possible. Why?!
!  Higher miss rate than L1. Why?!

–  L3 caches now standard on laptop/desktop/server processors!
!  30+ cycle access time!
!  2-20+ MB capacity!
!  Very high associativity (16-32 ways)!

Inf3 Computer Architecture - 2014-2015 25

Second Level Caches!

!  Memory subsystem performance:!

!  Miss rates:!
–  Local: the number of misses divided by the number of requests to

the cache!
!  E.g., Miss rateL1 and Miss rateL2 in the equations above!
!  Usually not so small for lower level caches!

–  Global: the number of misses divided by the total number of
requests from the CPU!
!  E.g, L2 global miss rate = Miss rateL1 x Miss rateL2!
!  Represents the aggregate effectiveness of the cache hierarchy!

Avg. mem. time = Hit timeL1 + Miss rateL1 x Miss penaltyL1

Miss penaltyL1 = Hit timeL2 + Miss rateL2 x Miss penaltyL2

∴ Avg. mem. time = Hit timeL1 + Miss rateL1 x (Hit timeL2 + Miss rateL2 x Miss penaltyL2)

Inf3 Computer Architecture - 2014-2015 26

Cache Misses vs. L2 size!

!  L2 caches must be much bigger than L1!
!  Local miss rates for L2 are larger than for L1 and are not a good

measure of overall performance!

H&P
Fig. 5.10

0

20

40

60

80

100

120

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B

M
is

s
ra

te
 (%

)

L2 size

Global miss rate L2 local miss rate

Secondary working
set accommodated

Inf3 Computer Architecture - 2014-2015 27

Cache Performance II!

!  Memory system and processor performance:!

!  Improving memory hierarchy performance:!
–  Decrease hit time!
–  Decrease miss rate (block size, prefetching, associativity, compiler)!
–  Decrease miss penalty (victim caches, reads over writes, prioritize critical

word, non-blocking caches, additional cache levels)!

CPU time = IC x CPI x Clock time

Avg. mem. time = Hit time + Miss rate x Miss penalty

CPU performance eqn.

Memory performance eqn.

Inf3 Computer Architecture - 2014-2015 28

Reducing Cache Hit Time!

Technique 1: small and simple caches!

–  Small caches fit on-chip → signals take a long time to go off-chip!

–  Low associativity caches have few tags to compare against the requested
data!

–  Direct mapped caches have only one tag to compare and comparison can
be done in parallel with the fetch of the data!

Inf3 Computer Architecture - 2014-2015 29

Reducing Cache Hit Time!

Technique 2: virtual-addressed caches!
–  Programs use virtual addresses for data, while main memory uses physical

addresses → addresses from processor must be translated at some point!

Discussed in “Virtual Memory” lecture (next!)!

CPU

L1 cache

tag data

?

Virtual address:
0x0004

address
translation

Physical address:
0xc104

Inf3 Computer Architecture - 2014-2015 33

Cache Performance Techniques!

technique miss rate miss penalty hit time complexity

large block size # $ #

high associativity # $ $

victim cache # # $

hardware prefetch # $

compiler prefetch # $

compiler optimizations # $

prioritisation of reads # $

critical word first # $

nonblocking caches # $

L2 caches # $

small and simple caches $ # #

virtual-addressed caches # $

