
Inf3 Computer Architecture - 2014-2015 1

Improving Performance: Pipelining!

General
registers

ID MEM IF EXE WB

Memory

Memory

IF Instruction Fetch (includes PC increment)
ID Instruction Decode + fetching values from general purpose registers
EXE Execute arithmetic/logic operations or address computation
MEM Memory access or branch completion
WB Write Back results to general purpose registers (a.k.a. Commit)

Inf3 Computer Architecture - 2014-2015 2

Phases of Instruction Execution!

§  Instruction Fetch!
–  InstructionRegister = MemRead (INST_MEM, PC)!

§  Decoding!
–  Generate datapath control signals!
–  Determine register operands!

§  Operand Assembly!
–  Trivial for some ISAs, not for others!
–  E.g. select between literal or register operand; operand pre-scaling!
–  Sometimes considered to be part of the Decode phase!

§  Function Evaluation or Address Calculation!
–  Add, subtract, shift, logical, etc.!
–  Address calculation is simply unsigned addition!

§  Memory Access (if required)!
–  Load: ReadData = MemRead(DATA_MEM, MemAddress, Size)!
–  Store: MemWrite (DATA_MEM, MemAddress, WriteData, Size)!

§  Completion!
–  Update processor state modified by this instruction!
–  Interrupts or exceptions may prevent state update from taking place!

Note: INST_MEM and
DATA_MEM may be
same or separate physical
memories

Inf3 Computer Architecture - 2014-2015 3

Instruction fetch!

§  Read from Instruction Cache at address given by PC!
§  Increment PC, i.e. PC = PC + sizeof(instruction)!

PC

Instruction
memory

Read
Address

Read
Data

Add
4

Inf3 Computer Architecture - 2014-2015 4

MIPS R-type instruction format!

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

opcode reg rs reg rt reg rd shamt funct

!
add $1, $2, $3

sll $4, $5, 16

special $2 $3 $1 add

special $5 $4 16 sll

Destination register for R-type format

Inf3 Computer Architecture - 2014-2015 5

MIPS I-type instruction format!

6 bits 16 bits 5 bits 5 bits

opcode reg rs reg rt immediate value/addr

lw $2 $1 address offset

 beq $4 $5 (PC - .Label1) >> 2

!
lw $1, offset($2)

beq $4, $5, .Label1

addi $1, $2, -10 addi $2 $1 0xfff6

Destination register for Load

Inf3 Computer Architecture - 2014-2015 6

Reading Registers!

§  Use source register fields to address the register file and read two registers!
§  Select the destination register address, according to the format!

inst [15:11]

inst [20:16]

inst [25:21]
PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Inf3 Computer Architecture - 2014-2015 7

Extracting the literal operand!

§  Sign-extend the 16-bit literal field, for those instructions that have a literal!

lit = { {16{inst[15]}}, inst[15:0] }

Verilog

inst [15:11]

inst [20:16]

inst [25:21]
PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Sign
extend

inst [15:0]

Inf3 Computer Architecture - 2014-2015 8

Performing the Arithmetic!

§  Perform arithmetic or logical operation on Read Data 0 and either Read Data 1 or
the sign-extended literal!

inst [15:11]

inst [20:16]

inst [25:21]
PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Sign
extend

ALU
m
u
x

inst [15:0]

Inf3 Computer Architecture - 2014-2015 9

A

B [4:0]

Inside the ALU!

§  Adder, Logic Unit, and Barrel Shifter are separate combinational logic blocks!

Add

Logic
unit

==0
m

u

x

Zero

+

A

B Cin

Cout

Barrel
shifter

B

SubtractOp

AndOp

OrOp
XorOp

LeftOp
SignedOp

Result

ShiftOp

ALU

Inf3 Computer Architecture - 2014-2015 10

Computing Branch Displacements!

§  Compute sum of PC and scaled, sign-extended literal displacement!
§  Can’t share ALU, it might be needed for comparisons during branch operations!

inst [15:11]

inst [20:16]

inst [25:21]
PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Sign
extend

ALU
m
u
x

Add
<< 2

m
u
x

PCsrc

inst [15:0]

Inf3 Computer Architecture - 2014-2015 11

Accessing Memory – Loads & Stores!

§  Load and Store instructions use the ALU result as the effective address!
§  Store instructions use Read Data 1 as the store data!

inst [15:11]

inst [20:16]

inst [25:21]
PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Sign
extend

ALU
m
u
x

Add
<< 2

m
u
x

PCsrc

Data Memory
Address

Write
data

Read
data

MemRd MemWr

m
u
x

LoadReg

inst [15:0]

Inf3 Computer Architecture - 2014-2015 12

inst [31:26]

inst [15:11]

inst [20:16]

inst [25:21]

Decoding Instructions!

§  Control signals driven by combinational logic, based on instruction opcode!

PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

RegDst

Sign
extend

ALU
m
u
x

Add
<< 2

m
u
x

PCsrc

Data Memory
Address

Write
data

Read
data

MemRd
MemWr

m
u
x

LoadReg

Decode
logic

ALUsrc

ALU
decode

ALUop

inst [5:0]

zero

inst [15:0]

Inf3 Computer Architecture - 2014-2015 13

Pipelined Instruction Execution!

time

action

Fetch
Decode

Execute
Memory

Write

1

Fetch
Decode

Execute
Memory

Write

2

Fetch
Decode

Execute
Memory

Write

2

Fetch
Decode

Execute
Memory

Write

3

Fetch
Decode

Execute
Memory

Write

4

Fetch Decode Execute Memory Write

Phases of Instruction Execution

clock

Fetch
Decode

Execute
Memory

Write

5

Inf3 Computer Architecture - 2014-2015 14

[31:26]

[15:11]

[20:16]

[25:21]

CPU Pipeline Structure!

PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

Sign
extend

[15:0]

ALU
m
u
x

Add
<< 2

m
u
x

Data Memory
Address

Write
data

Read
data

m
u
x

Decode
logic

ALU
decode

zero

IF DEC EX MEM WB

PC+4

EX

MEM

WB

MEM

WB WB

PC+4 bPC

6

Branch
decision

Inf3 Computer Architecture - 2014-2015 15

Implementation Issues: Pipeline balance!

§  Each pipeline stage is a combinational logic network!
–  Registered inputs and outputs!
–  Longest circuit delay through all stages determines clock period!

Q D
Q D

Pipeline
Stage
Logic

Q D

Q D

Q D

Clock tree

clock

clk1 clk2

Ideally, all delays through every
pipeline stage are identical

In practice this is hard to achieve

Inf3 Computer Architecture - 2014-2015 16

Representing a sequence of instructions!

§  Space-time diagram of pipeline!
§  Think of each instruction as a time-shifted pipeline!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Instruction 1

Instruction 2

Instruction 3

Instruction 4

IF Mem Reg ALU Reg Instruction 5

Inf3 Computer Architecture - 2014-2015 17

Information flow constraints!

§  Information from one instruction to any successor must
always move from left to right!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Instruction 1

Instruction 2

Instruction 3

Instruction 4

IF Mem Reg ALU Reg Instruction 5

Inf3 Computer Architecture - 2014-2015 18

Another way to represent pipeline timing!

§  A similar, and slightly simpler, way to represent pipeline timing:!
–  Clock cycles progress left to right!
–  Instructions progress top to bottom!
–  Time at which each instruction is present in each pipeline stage is

shown by labelling appropriate cell with pipeline name!
§  This form is used in H&P, and throughout the remainder of these

notes.!

Instruction \ cycle 1 2 3 4 5 6 7 8 9

instruction 1 IF DEC EX MEM WB

instruction 2 IF DEC EX MEM WB

instruction 3 IF DEC EX MEM WB

instruction 4 IF DEC EX MEM WB

instruction 5 IF DEC EX MEM WB

Inf3 Computer Architecture - 2014-2015 19

Pipeline Hazards!

§  Hazards are pipeline events that restrict the pipeline flow!
§  They occur in circumstances where two or more activities cannot

proceed in parallel!

§  There are three types of hazard:!
–  Structural Hazards!

§  Arise from resource conflicts, when a set of actions have to be performed sequentially
because there is not sufficient resource to operate in parallel!

–  Data Hazards!
§  Occur when one instruction depends on the result of a previous instruction, and that

result is not yet available. These hazards are exposed by the overlapped execution of
instructions in a pipeline!

–  Control Hazards!
§  These arise from the pipelining of branch instructions, and other activities that change

the PC. !

Inf3 Computer Architecture - 2014-2015 20

Structural Hazards!

§  Multi-cycle operations!
§  Memory or register file port restrictions!

Instruction \ cycle 1 2 3 4 5 6 7 8 9 10

lw $1, ($2) IF DEC EX M EM WB

instruction 2 IF DEC EX M EM WB

instruction 3 IF DEC EX M EM WB

instruction 4 IF DEC EX M EM WB

instruction 5 IF DEC EX M EM WB

Instruction \ cycle 1 2 3 4 5 6 7 8 9 10

lw $1, ($2) IF DEC EX M EM WB

instruction 2 IF DEC EX M EM WB

instruction 3 IF DEC EX M EM WB

instruction 4 IF IF DEC EX M EM WB

instruction 5 IF DEC EX M EM WB

Example structural hazard caused by having only one memory port

Effect is to STALL instruction 4, delaying its entry to IF by one cycle

Inf3 Computer Architecture - 2014-2015 21

Data Hazards!

§  Overlapped execution of instructions means information may be required
before it is available.!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, r7

OR R8, R1, R9

IF Mem Reg ALU Reg XOR R10, R1, R11

Inf3 Computer Architecture - 2014-2015 22

Data hazards lead to pipeline stalls!

§  SUB instruction must wait until R1 has been written to register file!
§  All subsequent instructions are similarly delayed!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, r7

OR R8, r1, R9

IF Mem Reg ALU Reg XOR R10, R1, R11

Mem Reg ALU Reg STALL IF

Inf3 Computer Architecture - 2014-2015 23

Minimising data hazards by data-forwarding!

§  Key idea is to bypass the register file and forward information, as soon as
it becomes available within the pipeline, to the place it is needed.!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, r7

OR R8, r1, R9

IF Mem Reg ALU Reg XOR R10, R1, R11

Inf3 Computer Architecture - 2014-2015 24

[31:26]

[15:11]

[20:16]

[25:21]

CPU pipeline showing forwarding paths!

PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

Sign
extend

[15:0]

ALU

m
u
x

Add
<< 2

m
u
x

Data Memory
Address

Write
data

Read
data

m
u
x

Decode
logic

ALU
decode

zero

IF DEC EX MEM WB

PC+4

EX

MEM

WB

MEM

WB WB

PC+4 bPC

6

Branch
decision

m
u
x

Dependency
checks

Inf3 Computer Architecture - 2014-2015 25

Data hazards requiring a stall!

§  Hazards involving the use of a Load result usually require a stall, even if
forwarding is implemented!

IF Mem Reg ALU Reg

IF Reg Mem ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

LW R1, (R2)

SUB R4, R1, R5

AND R6, R1, r7

OR R8, r1, R9

IF Mem Reg ALU Reg XOR R10, R1, R11

STALL

Inf3 Computer Architecture - 2014-2015 26

Code scheduling to avoid stalls (before)!

§  Hazards involving the use of a Load may be avoided by reordering the
code!

IF Mem Reg ALU Reg

Mem ALU Reg IF Reg

Mem ALU Reg IF Reg

Mem Reg ALU Reg IF

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

LW R1, 2(R2)

LW R3, 4(R1)

ADD R4, R4, R3

ADD R1, R1, 4

IF Mem Reg ALU Reg SUB R9, R9, 1

STALL

STALL

Inf3 Computer Architecture - 2014-2015 27

Code scheduling to avoid stalls (after)!

§  SUB is entirely independent of other instructions – place after 1st load!
§  ADD to R1 can be placed after LW to R3 to hide the load delay on R3!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

LW R1, 2(R2)

SUB R9, R9, 1

LW R3, 4(R1)

ADD R1, R1, 4

IF Mem Reg ALU Reg ADD R4, R4, R3

Inf3 Computer Architecture - 2014-2015 28

General Performance Impact of Hazards!

Speedup from pipelining: S =
CPIunpipelined

CPIpipelined

x
clockunpipelined

clockpipelined

CPIpipelined = ideal CPI + stall cycles per instruction = 1 + stall cycles per instruction

CPIunpipelined ~ pipeline depth

clockunpipelined

clockpipelined

~ 1

S =
pipeline depth

1 + stall cycles per instruction

Inf3 Computer Architecture - 2014-2015 29

Control Hazards!

§  When a branch is executed, PC is not affected until the branch
instruction reaches the MEM stage.!

§  By this time 3 instructions have been fetched from the fall-through path.!

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

BEQZ R1, label

SUB R4, R2, R5

AND R6, R2, r7

OR R8, r2, R9
 :
 :

IF Mem Reg ALU Reg XOR R10, R1, R11

Kill instructions
in EX, DEC and IF

as they move
forwards

label:

Inf3 Computer Architecture - 2014-2015 30

Effect of branch penalty on CPI!

§  In this example pipeline the cost of each branch is:!
§  1 cycle, if the branch is not taken (due to load-delay slot)!
§  4 cycles, if the branch is taken!

§  If an equal number of branches are taken and not taken, and if 20% of all
instructions are branches (a reasonable assumption), then!
–  CPI = 0.8 + 0.2*2.5 = 1.3!
–  This is a significant reduction in performance!

§  If the pipeline was deeper, with 2 stages for ALU and 2 stages for
Decode, then:!
–  Cost of taken branch would be 6 cycles!
–  CPI = 0.8 + 0.2*3.5 = 1.5!

§  Deeper pipelines have greater branch penalties, and potentially higher CPI!
§  Pentium 4 (Prescott) had 31 pipeline stages! (this was too deep)!
§  Several important techniques have been developed to reduce branch

penalties!
§  Early branch outcome!
§  Delayed branches!
§  Branch prediction (static and dynamic)!

Inf3 Computer Architecture - 2014-2015 31

[31:26]

[15:11]

[20:16]

[25:21]

Early branch outcome calculation - BEQZ, BNEZ!

PC

Instruction
memory

Read
Address

Read
Data

Add
4

Register File

Read
Addr 0

Read
Addr 1

Write Addr

Write Data

Read
Data 0

Read
Data 1

m
u
x

Sign
extend

[15:0]

ALU

m
u
x

Add
<< 2

m
u
x

Data Memory
Address

Write
data

Read
data

m
u
x

Decode
logic

ALU
decode

IF DEC EX MEM WB

PC+4

EX

MEM

WB

MEM

WB WB

6

RD0 == 0
?

m
u
x

Inf3 Computer Architecture - 2014-2015 32

Delayed branch execution!

§  Always execute the instruction immediately after the branch, regardless
of branch outcome.!

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

IF Mem Reg ALU Reg SUB R4, R2, R5

BEQZ R1, label

XOR R10, R1, R11
label:

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg OR R8, r2, R9
 :
 :

Before: instruction after
the branch gets killed if the
branch is taken

After: by moving the SUB
instruction into the branch
delay slot, and executing it
unconditionally, the 1-cycle
penalty is eliminated

Branch delay slot
IF Mem Reg ALU Reg BEQZ R1, label

SUB R4, R2, R5

XOR R10, R1,
R11

label:

IF Mem Reg ALU Reg

IF Mem Reg ALU Reg

Case Study: Pipelining in MIPS R4000!

§  Introduced in early 90s!
–  1.2 million transistors, 250 Mhz peak frequency!
–  64-bit CPU – one of the first!!

§  Notable feature: pipelined memory accesses!
Inf3 Computer Architecture - 2014-2015 33

Load-to-use latency in the MIPS R4000!

2-cycle load delay slot!

Inf3 Computer Architecture - 2014-2015 34

Inf3 Computer Architecture - 2014-2015 35

Impact of Empty Load-delay Slots on CPI!

Bottom-line: CPI increase of 0.01 – 0.27 cycles!

H&P 5/e
Fig. C.52

0

0.5

1

1.5

2

2.5

3

co
mpr

es
s

eq
nto

tt

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dro

2d

mdlj
dp

su
2c

or

Benchmark

C
PI

FP structural stalls

FP result stalls

Branch stalls

Load stalls

Base CPI

Branch delay in MIPS R4000 !

Inf3 Computer Architecture - 2014-2015 36

3-cycle branch taken delay!

Inf3 Computer Architecture - 2014-2015 37

Impact of Branch Hazards on CPI!

Bottom-line: CPI increase of 0.06 – 0.62 cycles!

0

0.5

1

1.5

2

2.5

3

co
mpr

es
s

eq
nto

tt

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dro

2d

mdlj
dp

su
2c

or

Benchmark

C
PI

FP structural stalls

FP result stalls

Branch stalls

Load stalls

Base CPI

H&P 5/e
Fig. C.52

