
Previous lecture recap!

§  Metrics of computer architecture!
§  Fundamental ways of improving performance:  

parallelism, locality, focus on the common case!

§  Amdahl’s Law: speedup proportional only to the
affected fraction of the original execution time!

§  CPU Performance equation: IC * CPI * Clock time!
–  Must improve some combination of the above to improve perf!

Inf3 Computer Architecture - 2014-2015 1

Reminder: tutorials start next week!

Inf3 Computer Architecture - 2014-2015 2

ISA: The Hardware – Software Interface!

§  Instruction Set Architecture (ISA) is where software meets
hardware!
–  Understanding of ISA design is therefore important!
!

§  Instruction Set Components!
–  Operands: int32, uint32, int16, uint16, int8, uint8, float32, float64!
–  Addressing modes: how do we access data (in regs, memory, etc)!
–  Operations: four major types!

§  Operator functions (add, shift, xor, mul, etc)!
§  Data movement (load-word, store-byte, etc)!
§  Control transfer (branch, jump, call, return, etc)!
§  Privileged, and miscellaneous instructions (not part of the application)!

§  Good understanding of compiler translation is essential!

Inf3 Computer Architecture - 2014-2015 3

ISA Design Considerations!

§  Simple target for compilers!

§  Support for OS and programming language features!

§  Support for important data types (floating-point, vectors)!

§  Code size!

§  Impact on execution efficiency (especially with pipelining)!

§  Backwards compatibility with legacy processors!

§  Provision for extensions!

CISC vs RISC!

§  CISC!
–  Assembly programming à HLL features as instructions!
–  Small # registers, memory not that slow à memory

operands!
–  Code size must be small à variable length!
–  Backward compatibility à complexity increases!

§  RISC!
–  Compilers à Simple instructions !
–  Large # registers, memory much slower than processor

à load store architecture!
–  Simple and fast decoding à fixed length, fixed format!

Inf3 Computer Architecture - 2014-2015 4

Instruction Classes!

§  Instructions that operate on data!
–  Arithmetic & logic operations!
–  Execution template: fetch operands, perform op, store

result!

§  Instructions that move data!
–  Move data between registers, memory, and I/O devices!

§  Instructions that change control flow!
–  Re-direct control flow away from the next instruction!
–  May be conditional or unconditional (including

exceptions!)!

Inf3 Computer Architecture - 2014-2015 5

Inf3 Computer Architecture - 2014-2015 6

Operators and their Instructions!

§  Integer Arithmetic!
+ add!
- sub!
* mul!
/ div!
% rem!

§  Relational!
< slt, sltu!
<= sle, sleu!
> sgt, sgtu!
>= sge, sgeu!
== seq!
!= sne!

C operator! Comparison! Reverse! Branch!

==! seq! 0! bnez!

!=! seq! 0! beqz!

<! slt, sltu! 0! bnez!

>=! slt, sltu! 0! beqz!

>! slt, sltu! 1! bnez!

<=! slt, sltu! 1! beqz!

Inf3 Computer Architecture - 2014-2015 7

Operators continued…!

§  Bit-wise logic!
| or!
& and!
^ xor!
~ not!

§  Boolean!
|| (src1 != 0 or src2 != 0)!
&& (src1 != 0 and src2 != 0)!

§  Shifts!
>> (signed) shift-right-arithmetic!
>> (unsigned) shift-right-logical!
<< shift-left-logical!

8

Operand Types!

§  Usually based on scalar types in C!
Type modifier! C type declarator! Machine type!

unsigned int, long uint32

unsigned short uint16

unsigned char uint8

unsigned long long uint64

signed int int32

signed short int16

signed char int8

signed long long int64

boolean uint1

float float32

double float64

&<type_specifier> uint32

§  C defines integer promotion for expression evaluation!
–  int16 + int32 will be performed at 32-bit precision!

§  First operand must be sign-extended to 32 bits!
–  Similarly, uint8 + int16 will be performed at 16-bit precision!

§  First operand must be zero-extended to 16-bit precision!
Inf3 Computer Architecture - 2014-2015

Inf3 Computer Architecture - 2014-2015 9

Instruction Operands - Registers!

§  Registers!
–  How many registers operands should be specified?!

3: R1 = R2 + R3!
2: R1 = R1 + R2!
1: +R1!

§  32-bit RISC architectures normally specify 3 registers for dyadic
operations and 2 registers for monadic operations!

§  Compact 16-bit embedded architectures often specify respectively 2 and
1 register in these cases!
–  Introduces extra register copying!
–  E.g.!

load ! r1, [address]!
copy r2, r1!
add r1, r3!
sub r4, r2 # this is simply a re-use of r1, but the value of r1 had to be copied

! !into r2!

§  Accumulator architectures: now dead, but concept still widely used in
Digital Signal Processors (DSP).!
–  E.g.!

load [address1]!
add 23!
store [address2]!

Inf3 Computer Architecture - 2014-2015 10

Instruction Operands - Literals!

§  Constant operands!
–  E.g. add r1, r2, 45!

§  Jump or branch targets!
–  Relative:!

§  Normally used for if-then-else and loop constructs within a single function!
§  Distances normally short – can be specified as 16-bit signed & scaled offset!
§  Permits “position independent code” (PIC)!

–  Absolute!
§  Normally used for function call and return!
§  But not all function addresses are compile-time constants, so jump to contents of

register is also necessary!

§  Load/Store addresses!
–  Relative!
–  Absolute!

!

Inf3 Computer Architecture - 2014-2015 11

How big do literals have to be?!

§  Addresses!
–  Always 32 (or 64 bits)!

§  Arithmetic operands!
–  Small numbers, representable in 5 – 10 bits are common!

§  Literals are often used repeatedly at different locations!
–  Place as read-only data in the code and access relative to program

counter register (e.g. MIPS16, ARM-thumb)!
§  Branch offsets!

–  10 bits catches most branch distances!
§  32-bit RISC architectures provide 16-bit literals!
§  16-bit instructions must cope with 5 – 10 bits!

–  May extend literal using an instruction prefix!
–  E.g. Thumb bx instruction!

Inf3 Computer Architecture - 2014-2015 12

Memory Access Operations!

§  Memory operations are governed by:!
–  Direction of movement (load or store)!
–  Size of data objects (word, half-word, byte)!
–  Extension semantics for load data (zero-ext, sign-ext)!

Memory
access

load store

half-word word byte word half-word byte

signed unsigned signed unsigned

lw

lh lhu lb lbu

sw sh sb

Inf3 Computer Architecture - 2014-2015 13

Memory Addressing Modes: Displacement!

Displacement addressing is the most common memory
addressing mode!

§  Register + offset!
–  Generic form for accessing via pointers!

–  Multi-dimensional arrays require address calculations!

§  Stack pointer and Frame pointer relative!
–  5 to 10 bits of offset is sufficient in most cases!

§  PC relative addresses!
–  Used to modify control flow (e.g., upon a branch)!

Other Memory Addressing Modes!

§  Direct or absolute: useful for accessing constants and
static data!

§  Auto-increment/decrement: useful for iterating over
arrays or for stack push/pop operations!

§  Scaled: speeds up random array accesses  
!e.g., R7 = R5 + Mem[R1 + R2 * d]

where d is determined by the size of the data item being
accessed (byte, hw, word, long)!

§  Memory indirect: in-memory pointer dereference 
!e.g., R3 = Mem[Mem[R1]]

Inf3 Computer Architecture - 2014-2015 14

Inf3 Computer Architecture - 2014-2015 15

Memory Addressing Mode Frequency!

Few addressing modes account for most memory accesses!

H&P 5/e Fig. A.7

Instructions for Altering Control Flow!

Inf3 Computer Architecture - 2014-2015 16

§  Conditional (branches)!
§  (unconditional) Jumps!
§  Function calls and returns!
§  Exceptions & interrupts!

–  Traps (instructions) vs events!
–  Trigger a mode change!
!

H&P 5/e Fig. A.11

Inf3 Computer Architecture - 2014-2015 17

Conditional Instruction Formats!

§  Condition code based (e.g., x86)!
–  sub $1, $2!
–  Sets Z, N, C, V flags!
–  Branch selects condition !

§  ble : N or Z!
–  (+) Condition set for free (“side-effect” of instruction execution)!
–  (-) Volatile state (next instruction may overwrite flags)!

§  Condition register based!
–  slte $1, $2, $3!
–  bnez $1 (or beqz $1)!
–  (+) Simple and reduces number of opcodes!
–  (-) Uses up a register!

§  Compare and branch!
–  combt lte $1, $2!
–  (+) One instruction per branch!
–  (-) “Complex” instruction!

Instruction Frequency by Type!

Inf3 Computer Architecture - 2014-2015 18

0%!

5%!

10%!

15%!

20%!

25%!

0%!

10%!

20%!

30%!

40%!

Data operation!Data movement! Control flow!

Data from H&P 5/e Fig. A.13

Inf3 Computer Architecture - 2014-2015 19

Encoding the Instruction Set!

§  How many bits per instruction?!
–  Fixed-length 32-bit RISC encoding!
–  Variable-length encoding (e.g. Intel x86)!
–  Compact 16-bit RISC encodings!

§  ARM Thumb!
§  MIPS16!

§  Formats define instruction groups with a common set of
operands!

§  Orthogonal ISA: addressing modes are independent of the
instruction type (i.e., all insts can use all addressing modes)!
–  Great conceptually and for compilation!
–  E.g., VAX-11: 256 opcodes * 13 addressing modes (mode encoded

with each operand)!

Inf3 Computer Architecture - 2014-2015 20

MIPS 32-bit Instruction Formats!

§  R-type (register to register)!
–  three register operands!

–  most arithmetic, logical and shift instructions!

§  I-type (register with immediate)!
–  instructions which use two registers and a constant!

–  arithmetic/logical with immediate operand!

–  load and store!

–  branch instructions with relative branch distance!

§  J-type (jump)!
–  jump instructions with a 26 bit address!

Inf3 Computer Architecture - 2014-2015 21

MIPS R-type instruction format!

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

opcode reg rs reg rt reg rd shamt funct

!
add $1, $2, $3

sll $4, $5, 16

special $2 $3 $1 add

special $5 $4 16 sll

Inf3 Computer Architecture - 2014-2015 22

MIPS I-type instruction format!

6 bits 16 bits 5 bits 5 bits

opcode reg rs reg rt immediate value/addr

lw $2 $1 address offset

 beq $4 $5 (PC - .L001) >> 2

!
lw $1, offset($2)

beq $4, $5, .L001

addi $1, $2, -10 addi $2 $1 0xfff6

Inf3 Computer Architecture - 2014-2015 23

MIPS J-type instruction format!

6 bits 26 bits

opcode address

!
call func jal absolute func address >> 2

Inf3 Computer Architecture - 2014-2015 24

ISA Guidelines!

§  Regularity: operations, data types, addressing modes, and
registers should be independent (orthogonal)!

§  Primitives, not solutions: do not attempt to match HLL
constructs with special IS instructions!

§  Simplify tradeoffs: make it easy for compiler to make choices
based on estimated performance!

