
CS4 Computer Algebra Syllabus (2018–2019)

As a general rule, the examinable material consists of everything covered in lectures including
suggested exercises and related material in the coursework, especially the pencil and paper exer-
cises, or assigned as home reading. More emphasis will be placed on a sound understanding of the
main concepts and techniques, and an ability to explain them and apply them to related problems,
than on memorizing technical details. However there will be a certain amount ‘bookwork’ content
which can vary between questions, recent past papers are a reasonable guide to this1. Below is
a summary of topics covered, together with some notes which should be helpful. (The amount
of space devoted to a topic is not indicative of its importance.) The summary is organized by
sections that correspond to those in the notes.

You will see from time to time that the proofs of certain theorems are non-examinable. You
should therefore not try to memorize these but understanding some of the proofs is usually a good
way of consolidating your understanding of the basic material of the relevant topic. It is very
important that you are able to reason about fairly straightforward situations. For example you
should be able to reason about polynomials, appreciate when it is best to view them structurally
and take degrees etc., when it might be best to expand them and consider coefficients, or maybe
a mixture of both. Likewise you should be able to work with ideals, e.g., if I is an ideal and
f1, f2, . . . , fr ∈ I then you should (i) know straight away that (f1, f2, . . . , fr) ⊆ I and (ii) be able
to prove this if asked. As another example you should be able to see straight away that, e.g.,
2x + 3y 6∈ (x2, y2) because every non-zero element of (x2, y2) has degree at least 2. You should
also be able to see that this reasoning depends heavily on the fact that the generators are power
products and fails in general, e.g., y ∈ (x2 + y, x2).

As mentioned above, past exam papers are a reasonable guide but remember that some topics
have changed (in particular those covered in the exercises). Note that each examinable topic is
equally likely to come up irrespective of what has happened in previous years.

An important point to note is that if you are asked to describe an algorithm you can do it in
clear English with appropriate use of Mathematical notation or pseudocode or a mixture. The
important point is to give the key ideas clearly. As an example, if you are asked to describe an
algorithm for isolating all the real roots of a polynomial then you can discuss the method based on
Sturm sequences. The key points are that (i) we make the polynomial square free (state how), (ii)
construct the Sturm sequence (so here you must state clearly how that is done), (iii) find an a > 0
such that (−a, a) contains all the roots of the polynomial (here it is enough to mention use of
either Cauchy bound covered in the notes without further details), (iv) how we use the Sturm
sequence to count the roots (v) by repeated subdivision and root counting we can now isolate all
the roots. The last part is utterly trivial and does not require any more explanation really. The
core is the construction and use of Sturm sequences and that is where most of the marks would
be allocated.

§1 Introduction

This consists of the sort of general knowledge expected of somebody who claims to have studied
computer algebra.

§2 Brief Introduction to Axiom

You are expected to know about Axiom in reasonable, but not minute, detail (i.e., to the level
used in the assignments and as discussed in this section). You could be asked to describe some
aspects of Axiom or be given some Axiom code and asked to comment on various points about
the code as well as possible further developments. For example you might be asked to enhance
given code in some simple ways, justify correctness of some parts (usually by using Mathematical
properties of the problem addressed) and/or suggest modifications to improve efficiency (no formal

1Any questions involving Maple would now be expressed in terms of Axiom whenever possible, otherwise replaced
if I was writing the exam now. In any case there are now several exams based on Axiom and they are a good guide.

1



analysis). Code might be based on ideas drawn from other parts of the course possibly applied to
a simpler situation, e.g., use of modular arithmetic for some straightforward problem such as the
multiplication of polynomials or applied to a question relating to their gcd.

You will not be required to write large amounts of code—at the very most you might find it
useful to include small fragments which need not be 100% syntactically correct. You will also not
be expected to remember obscure Axiom functions, only the most common ones. In general a
question will describe what Axiom functions do unless they are from the basic set, e.g., gcd, max.
You are expected to know the basic programming constructs and the various methods of declaring
types or type conversion but minor slips will not attract a heavy penalty (e.g., writing for v in

L do instead of for v in L repeat.
You do need to know how to declare types (two ways for functions) and any implications, e.g.,

that declaring a parameter of a function ti be of type UP(x,INT) means we can only supply integer
coefficient polynomials in x for that parameter. The level of knowledeg is required is only what
was covered in the notes and exercises along with the feedback provided.

§3 Computer Algebra Systems

Just a bit more general knowledge which will not be required in the exam.

§4 Basic Structures and Algorithms

All the material of this section is examinable except for §4.6.2 Worst Case Analysis of Euclid’s
Algorithm, §4.7.2 Digression: Formal Power Series and §4.7.7 A Remainder Theorem. Note
however that §§4.7.8, 4.7.9 are examinable. As mentioned above, it is important that you should
be able to reason about polynomials and their properties, e.g., those relating to gcd’s. You should
also understand, and be able to prove, some of the simple consequences of polynomial division
and gcds discussed in lectures. For example you should be able to prove that the quotient and
remainder in polynomial division are unique.

§5 Keeping the Data Small: Modular Methods

Make sure you understand the main idea behind the method—see §5.1 Modular gcd of Polynomials
in Z[x]. Of course you should ensure that you understand the definition of gcd’s (e.g., the level
of ambiguity and how we can resolve it) as well as the important role of primitive polynomials in
this context. On the topic of gcd’s you should also be able to reason about them in the general
context and relate them to particular ones (over the integers or polynomials). You can omit the
proofs of Lemma 5.1 and 5.2 but must understand the significance of the statements. It would be
reasonable for a question to be based around a different (fairly simple) algorithm and for you to
be asked to prove various facts and/or develop parts of the algorithm.

The statement and solution (together with proof) of the Chinese Remainder Problem for the
integers only. Note however that the Chinese Remainder Theorem as such can be stated without
any associated algorithm and this was given as Theorem 5.4 in the notes. (So if asked to state
the theorem you need only state that and do not need to go into details about any algorithm.)
The relevance of the symmetric representation of remainders modulo a given integer; you should
be able to prove that if we use an appropriate bound then we can recover the integer if we use a
sufficiently large modulus.

You are not expected to memorise the Landau-Mignotte inequality (or the proof) but must be
aware of its significance. All of §5.4 is examinable and it would be reasonable to ask you to prove
properties of resultants or their main property by a different method (for which you would have
guidance and/or hints). In particular you should be able to write down the resultant and be able
to use it to develop a new test or straightforward algorithm or use its properties to derive a simple
consequence. So far as the algorithm MODGCD is concerned concentrate on understanding how
and why it works—this is much more important than simply committing it to memory. For example
you could be given the results of some steps of the algorithm (possibly together with some extra

2



information) and asked to complete remaining parts. (If there is extra information, not normally
available to the algorithm, you should be able to use it sensibly; any extra information would
be there to make the calculations shorter.) Omit §5.5 Modular gcd Algorithm for Multivariate
Polynomials.

§6 Gröbner Bases

Basic definitions: ideals, varieties, significance of change of basis and that the variety remains
unchanged (including proof). Hilbert’s Basis Theorem (omit the proof) and the Nullstellensatz.
The relevance of these to systems of equations and of change of basis. Gröbner bases: intuitive
explanation, definition in terms of ideals (i.e., that G is a Gröbner basis for I if and only if for every
non-zero f ∈ I there is a g ∈ G s.t. lpp(g) | lpp(f)), the basic algorithm GRÖBNER BASIS and
concepts needed to understand it (e.g., admissible orderings, spol(f, g), reduction sequences). You
are expected to be able to explain the significance of these concepts, e.g., why are S-polynomials
defined in the way given or why do we define admissible orders with the two requirements (and
not some others)? The idea of reduction w.r.t. a set of polynomials and how it relates to the ideal
generated by the set. Omit Lemmas 6.4, 6.5 and Theorem 6.4. The notions of minimal, reduced
and normed Gröbner bases; you will not be asked to reproduce the proofs about these (but as
already stated understanding them is one way to reinforce your understanding of Gröbner bases).
Note that if asked to explain something from amongst these (e.g., an algorithm for computing
Gröbner bases) you do not need to explain all subsidiary concepts (S-polynomials, reduction) only
the top level notions. Such a question would probably ask you to illustrate your answer with
a (provided) simple example and that is where your knowledge of subsidiary concepts would be
demonstrated (just by doing things).

You should be able to reason about ideals and take advantage of special situations, e.g., be able
to prove that if F is a finite non-empty set of power products then it is a Gröbner basis for the
ideal (F ). Application to ideal membership and solution of equations with proofs. Relevance of
lexicographic ordering to diagonalization of equations and the number of solutions (the significance
of elimination ideals). You could be asked to apply these ideas to a similar situation where
appreciation of the elimination property is the key. Remember that we can define lexicographic
order in a very intuitive way: order the indeterminates then collect together all occurences of
indeterminates in a power product and treat as a word in a dictionary. Omit the Mathematical
proofs and improvements to the basic algorithm. Omit §6.6, §6.7 and §6.8.

§7 Real Roots of Polynomials

Basic ideas of isolation and approximation. Relevance of square free polynomials to root approx-
imation. Algorithms for approximation, computing the square free part (but not decomposition)
of a polynomial. Overall approach of §7.2 Real Root Isolation, relevance of Cauchy’s bounds on
roots (the statement and proof of Theorem 7.2 are examinable but not those of Theorem 7.3).
Sturm sequences: definition (you can omit the proof of correctness) use of sequences. Finding the
number of real roots from a Sturm sequence either in an interval (a, b] or the total number by
using VS(−∞) and VS(∞). Note that if asked to give an algorithm for isolating the roots of a
polynomial then you need only do that, there is no need to discuss how to shrink the intervals for
better approximation (in the past some students have wasted valuable time in this way); see the
discussion at the end of the introduction to this document.

The remaining sections (§§7.3, 7.4) are not examinable.

Kyriakos Kalorkoti, March 2019

3


