
7 Real Roots of Polynomials
There are many applications which require the solution in real numbers for equations of the form

p(x) = 0

where p(x) ∈ Q[x] (for example ray tracing in Computer Graphics). If p has degree at most 4 then
its roots can be expressed by means of a formula. However for degree 4 the formula is not much use
because roots which are real can appear to be complex until a significant amount of simplification
is carried out (the same holds for degree 3). For polynomials of degree 5 and higher it has been
known since the early 1800’s that no formula exists. (By formula we mean an expression involving
only the coefficients of p in which we can use the basic arithmetic operations as well as taking
powers, square roots, cube roots etc.) We are therefore forced to use an algorithmic approach. An
important division of the problem was made by Fourier (of the eponymous transforms):

Isolation: we find disjoint open intervals such that each one contains exactly one real root of p
and each real root of p is contained in one of the intervals,

Approximation: we shrink each interval so as to approximate the root it contains to the desired
degree of accuracy.

Approximation is by far the easier of the two problems so we deal with it first. Throughout this
section we are concerned with methods which are guaranteed to produce the required results. This
rules out methods such as Newton–Raphson iteration. In order to maintain exactness with relative
ease we always use rational arithmetic and so all our intervals are of the form (a, b) with a, b rational
numbers.

7.1 Real Root Approximation
It is well known that if p(x) does not have a root in the interval (a, b) then it does not change sign
in this interval (i.e., either p(ξ) > 0 for all a < ξ < b or p(ξ) < 0 for all a < ξ < b) . This fact
is intuitively obvious and is a consequence of the continuity of polynomial functions over the real
numbers (think of the graph of p(x)). If, on the other hand, p(x) happens to have a root in (a, b)
then it does not necessarily change sign. For example x2 has the root 0 in (−1, 1) but clearly it
does not change sign. Note that 0 has multiplicity 2 as a root of x2. Furthermore the polynomial x
has precisely the same roots as x2 and x does change sign in (−1, 1). This simple example is not
an isolated case. We define p(x) to be square free if it cannot be written as

p(x) = f(x)2g(x)

where f(x) ∈ Q[x] is non-constant. Take care to understand this definition in full: what is really
says is that p(x) has no repeated non-constant factors (if f(x) occurs e > 1 times as a factor then
f(x)2 is a factor of p(x)). Clearly the roots of f(x)2g(x) are the same as those of f(x)g(x) and
we could proceed further to remove any other squares in f(x)g(x). Thus every polynomial has
precisely the same roots as some square free polynomial (called its square free part). Now if p(x) is
square free and has a root α then for a sufficiently small ϵ the sign of p(x) in (α− ϵ, ϵ) is opposite
to its sign in (α, α+ ϵ). This is easy to see since, the fact that α is a root of p(x) means that

p(x) = (x− α)q(x)

90

for some non-zero polynomial q(x). Furthermore since p(x) is square free it follows that α is not
a root of q(x). Since q(x) has only finitely many roots, none of which is α, it follows that there is
an ϵ such that the sign of q(x) in (α− ϵ, α+ ϵ) does not change. The claim now follows. It is now
easy to see that if p(x) is square free then it has a root in (a, b) if and only if it changes sign in this
interval.

Suppose that (a, b) isolates a real root of p(x). Then the following algorithm can be used to
shrink (a, b):

Algorithm: APPROX(p(x), a, b, ϵ) 7→ A

(A is either the exact root of p contained in (a, b) or an interval (c, d) which isolates the same
root and satisfies d− c < ϵ.)

1. q(x) := SQFPART(p);

2. if q(a) = 0 then q(x) := q(x)/(x− a) fi;

3. if q(b) = 0 then q(x) := q(x)/(x− b) fi;

4. c := a;
d := b;
m := (c+ d)/2;

5. while d− c ≥ ϵ do
if q(m) = 0 then return m fi;
if sign(q(c)) ̸= sign(q(m)) then d := m; m := (c+ d)/2

else c := m; m := (c+ d)/2

fi
od;

6. A := (c, d)

We make some remarks concerning the algorithm.

1. SQFPART returns the square free part of its argument, we discuss an algorithm for this below.

2. The second and third steps may look a little strange. They are a consequence of our decision to
use open intervals for root isolation. This means that, for instance, (1, 3) is an isolating interval
for the root 2 of (x − 1)(x − 2)(x − 3). This difficulty is avoided if we use closed intervals but
then we have difficulties elsewhere!
Now α is a root of q if and only if x−α divides q (see §4.7.7) and so q/(x−α) is a polynomial.
Since q is square free it follows that α is not a root of q/(x−α); all other roots of q are of course
also roots of q/(x− α).

3. Obviously sign tells us if a number is positive or negative. (It doesn’t matter here what we do
about 0 here because we never use sign with 0 as argument, but a typical definition is to define
sign(r) to be +1 if r > 0, 0 if r = 0 and −1 if r < 0.)

91

Exercise 7.1 Let
p(x) = amxm + am−1x

m−1 + · · ·+ a0

where am ̸= 0. Show that

1. if m is odd then p(x) must have at least one real root.

2. If m is even and ama0 < 0 then p(x) must have at least two real roots (one positive and the
other negative).

Hint: think in terms of the graph of p.

7.1.1 Square Free Decomposition

Given p(x) ∈ Q[x] put

p(x) =

r∏
i=1

pi(x)
i.

where the pi(x) are pairwise coprime and square free. (Of course some of the pi may be 1, e.g.,
x4 + 3x3 + 3x2 + x = x1 · 12 · (x + 1)3.) We wish to compute the square free part of p(x), i.e.
p1(x)p2(x) · · · pr(x). We proceed as follows. Differentiating p(x) we have:

p′(x) =

r∑
i=1

ipi(x)
i−1p′i(x)

∏
j ̸=i

pj(x)
j ,

so that
r(x) = gcd(p(x), p′(x)) =

r∏
i=2

pi(x)
i−1.

Thus
t(x) = p(x)/r(x) =

r∏
i=1

pi(x),

which is the square free part as required.
In many applications it is useful to know the pi themselves (e.g., this enables us to know the

multiplicity of a root). Put

v(x) = gcd(r(x), t(x)) =

r∏
i=2

pi(x),

so that
p1(x) = t(x)/v(x).

Repeating the process with r(x) in place of p(x) gives us p2(x) etc.

We have therefore obtained a very efficient method of computing the square free part of p(x) as
well as its square free decomposition. Before moving on we must address a potential difficulty. Our
algorithm works entirely in Q[x] whereas we require the square free part of p(x) as an element of
R[x]. At first sight there is no reason to believe that the answer in Q[x] is the same as that in R[x].
After all there are plenty of properties of polynomials which change as we move from Q to R, e.g.,
x2 − 2 has no roots in Q but has two roots in R. Fortunately we have:

92

Theorem 7.1 Let D, D′ be integral domains with D a subdomain of D′ (i.e., D is a subset of D′

and the binary operations on D are just those of D′ restricted to D). Suppose that f, g ∈ D[x] have
a non-constant common factor in D′[x], then they have a non-constant common factor in D[x].

Proof Thinking of f , g as elements of D′[x] we see from Theorem 5.5 that Resx(f, g) must vanish.
But Resx(f, g) is an element of D[x] since it is a polynomial in the coefficients of f , g which are all
in D. It now follows from Theorem 5.5 that f , g have a non-constant common factor in D[x] as
claimed9. 2

Exercise 7.2 Use the preceding theorem to show that the square free decompositions of p(x) in Q[x]
and R[x] are the same up to a constant factor.

Exercise 7.3 Show that p(x), q(x) ∈ Q[x] have a common root (real or complex) if and only if
gcd(p(x), q(x)) has such a root where the gcd is computed in Q[x].

7.2 Real Root Isolation
Suppose we have an algorithm RCOUNT which takes a polynomial p(x), the endpoints of an interval
(a, b) and returns the number of real roots of p(x) in the interval. We can then use this to isolate
the roots of p(x) which lie in (a, b) as follows:

Algorithm: ISOL(p(x), a, b) 7→ [E,A]

(p(x) is square free. E is a list of (some of the) exact roots of p(x) which lie in (a, b) and A is a
list of isolating intervals for the rest of the roots of p(x) in (a, b).)

1. E := [];
A := [];
r := RCOUNT(p(x), a, b);

2. if r = 0 then return [[], []]

elif r = 1 then return [[], [(a, b)]]

fi;

3. W := [[a, b, r]]; (this holds intervals to be explored further)

4. while W ̸= [] do
remove the first element [c, d, r] from W ;
m := (c+ d)/2;
if p(m) = 0 then
E := append(E, [m]);
p(x) := p(x)/(x−m) (more efficient to work with lower degree polynomials!)

fi;
r := RCOUNT(p(x), c,m);

9The proof of Theorem 5.5 assumed that we were working over a UFD. It is not hard to show that the result holds
when the coefficients of the polynomial come from an integral domain.

93

if r = 1 then A := append(A, [(c,m)])

elif r > 1 then W := append(W, [[c,m, r]])

fi;
r := RCOUNT(p(x),m, d);
if r = 1 then A := append(A, [(m, d)]

elif r > 1 then W := append(W, [[m, d, r]])

fi;
od

It is worth noting that the algorithm presented above is biased towards clarity of presentation rather
than efficiency. In practice we would not make all those calls to RCOUNT but do the computations
in place and so avoid unnecessary recomputations (some of which can be very expensive).

In order to isolate all the roots of p(x) we need to be able to find an interval which contains all
of them. For this it suffices to find a number which is strictly bigger than the absolute values of
the roots of p(x).

Theorem 7.2 (Cauchy) Let

p(x) = amxm + am−1x
m−1 + · · ·+ a0

be a polynomial with complex coefficients where m ≥ 1 and am ̸= 0. Then any root α of p satisfies

|α| < 1 +
max{ |a0|, . . . , |am−1| }

|am|
.

Proof If |α| ≤ 1 then the result is trivially true. So suppose that |α| > 1 and put

M = max{ |a0|, . . . , |am−1| }.

Since α is a root of p we have

amαm = −am−1α
m−1 − · · · − a0

so that
|am||α|m ≤ M(|α|m−1 + · · ·+ |α|+ 1) <

M |α|m

|α| − 1
,

and
|am|(|α| − 1) < M

which proves the result. 2

One unattractive feature of this is that if we replace x by x/2, which changes the roots by a factor
of 2 only, the bound might change by as much as 2m. Note also that the bound is for all the roots
not only the real ones (recall that |a+ b

√
−1| =

√
a2 + b2. The following avoids the defect:

94

Theorem 7.3 (Cauchy) Let

p(x) = amxm + am−1x
m−1 + · · ·+ a0

be a polynomial with real coefficients where m ≥ 1, am > 0 and which has λ > 0 strictly negative
coefficients. Put

B = max
{∣∣∣λam−i

am

∣∣∣1/i ∣∣∣ 1 ≤ i ≤ m & am−i < 0
}
.

Then every positive real root of p is no larger than B.

Proof Suppose b > B. We have
bi > λ

∣∣∣am−i

am

∣∣∣
for each i such that am−i < 0. The inequality can also be written as

bm > λ
∣∣∣am−i

am

∣∣∣bm−i

and so
λambm > λ

∑
1≤i≤m

am−i<0

|am−i|bm−i.

or
ambm >

∑
1≤i≤m

am−i<0

|am−i|bm−i.

It follows from this that p(b) > 0 and so b is not a root of p(x). 2

Of course we can obtain a bound on the absolute values of the negative roots of p(x) by applying
the result to p(−x) (if p(x) has odd degree then p(−x) will have negative leading coefficient—we
rectify this by using −p(−x)). In this way we can obtain bounds BN , BP such that every root of
p(x) is in the closed interval [BN , BP] and so it must be in the open interval (BN − 1, BP + 1).

Exercise 7.4 At first sight the quantity B of the preceding theorem seems to require the extraction
of roots and so would be costly to implement. Show how to compute efficiently a good upper bound
to B using only rational arithmetic. (For a solution see Akritas [2, pp. 350–352].)

7.2.1 Counting Real Roots of Univariate Polynomials

We start with some useful definitions. Let y0, y1, . . . , ym be a sequence of real numbers. We define
the variation in the sequence to be the number of times the sign changes from one number to the
next, ignoring any occurrences of 0. Here are some examples:

Sequence Variation
2, −1, −2, 3, 3 2
2, 0, −1, 0, 0, −2, 3, 3, 2

−1, −10, 0, −3, 0, 1, 2, 0, 3 1
0, 3, −1, 2, 0, −4, 5, 0, −6 5

95

Now let S = p0(x), p1(x), . . . , pm(x) be a sequence of polynomials and a a real number. We define
the variation of S at a to be the variation of the sequence p0(a), p1(a), . . . , pm(a). This number is
denoted by VS(a). For example let

S = x3 − 7x+ 7, 3x2 − 7, 2x− 3, 1.

Then:
x Sequence VS(x)
−1 13, −4, −5, 1 2
0 7, −7, −3, 1 2

1/2 29/8, −25/4, −2, 1 2
1 1, −4, −1, 1 2

3/2 −1/8, −1/4, 0, 1 1
2 1, 5, 1, 1 0

Note that VS(x) cannot change as x varies unless x passes through a root of some polynomial of S.
Clearly this important observation is true for any sequence of polynomials.

Recall that a non-zero polynomial can have only finitely many roots. Suppose from now on
that all the polynomials in the sequence S are non-zero. It follows that only finitely many real
numbers can be the roots of any one of the polynomials in S. In particular any interval (a, b) can
contain only finitely many numbers which are the roots of some polynomial in S. We may therefore
subdivide the interval (a, b) into finitely many subintervals (a1, a2), (a2, a3), . . . , (an−1, an) such that
each subinterval contains at most one root and each root is in one of the intervals. Note that

VS(a)− VS(b) =

n−1∑
i=1

VS(ai)− VS(ai+1).

Suppose that
VS(ai)− VS(ai+1) ≥ 1

whenever (ai, ai+1) contains a root of some polynomial in S. It then follows that the number of
such roots in (a, b) is at most VS(a)−VS(b). Furthermore suppose that for a given polynomial p(x)
we can find a sequence S with the stronger property that

VS(ai)− VS(ai+1) =
{
1 if p(x) has a root in (ai, ai+1),
0 otherwise.

(11)

It then follows that p(x) has exactly VS(a)− VS(b) real roots in (a, b). It is a remarkable fact that
such a sequence can be found for any square free polynomial p(x).

We now assume that p(x) is square free and consider the sequence

Sturm(p) = p0(x), p1(x), . . . , pn(x)

defined by
p0(x) = p(x),

p1(x) = p′(x),

pi(x) = − remainder(pi−2(x), pi−1(x)), for i ≥ 2.

where ‘remainder’ means the remainder from polynomial division. Thus we simply keep applying
the Euclidean algorithm but take negative remainders. We terminate the sequence when a non-zero

96

constant is reached (clearly the sequence must stop after at most deg(p(x)) steps). In order to see
that we must eventually reach a non-zero constant note that, by the definition of the sequence, we
have

p0(x) = p1(x)q1(x)− p2(x)

p1(x) = p2(x)q2(x)− p3(x)

...
pn−2(x) = pn−1(x)qn−1(x)− pn(x)

(12)

and it follows from this that pn(x) is a gcd of p0(x) and p1(x), i.e., of p(x) and p′(x). But by
assumption p(x) and p′(x) do not have a non-constant common factor. In fact this argument shows
something more general: we could define a sequence like Sturm(p) for an arbitrary polynomial
p(x)—the termination condition is that we stop just before a zero remainder is obtained. We then
have that pn(x) is a gcd of p(x) and p′(x) so that p(x)/pn(x) is the square free part of p(x) up to
a non-zero constant multiple. Moreover if we put

qi(x) =
pi(x)

pn(x)
, for 1 ≤ i ≤ n,

then the sequence q1(x), q2(x), . . . , qn(x) can be used as the Sturm sequence of the square free part
of p(x).

The sequence just defined has the following properties.

1. If α is a real root of p(x) then for a sufficiently small ϵ we have that p(x) and p′(x) have
opposite sign for all values of x in (α − ϵ, α) and the same sign in (α, α + ϵ). For a formal
proof we write

p(x) = (x− α)mq(x)

where m > 0 and α is not a root of q(x). Then

p′(x) = m(x− α)m−1q(x) + (x− α)mq′(x).

Thus
p(α+ δ) = δmq(α+ δ),

p′(α+ δ) = mδm−1q(α+ δ) + δmq′(α+ δ).

The claim now follows from the observation that δm converges to 0 much faster than δm−1

for sufficiently small δ so that the sign of p′(α + δ) is determined by that of δm−1. However
the sign of p(α+ δ) is determined by that of δm. (The fact that α is not a root of q(x) means
that q(α+ δ) does not change sign for sufficiently small values of δ .)
It is worth noting that this argument does not rely on p(x) being square free. (An intuitive
explanation can be found by drawing the possible shapes of the graph y = p(x) near places
where it cuts or touches the x-axis.)

2. Two consecutive elements of the sequence cannot vanish at the same point. For if pi(α) =
pi+1(α) = 0 then it follows immediately from (12) that pn(α) = 0 but this is impossible since
pn(x) is a non-zero constant.

97

3. If pi(α) = 0 for some i with 0 < i < n then pi−1(α) and pi+1(α) have opposite signs. From (12)
we have

pi−1(α) = pi(α)qi(α)− pi+1(α)

so that
pi−1(α) = −pi+1(α)

and we know from the preceding part that neither of these two numbers can be zero.

Now let (a, b) be any interval such that neither a nor b is a root of p(x) with a ≤ b. If a = b the
claim ios trivial so we may assume that a < b. Let α1, α2, . . . , αm be the (possibly empty) sequence
of all real roots of the polynomials in the sequence Sturm(p) which are in the interval (a, b). As
above we may partition (a, b) into finitely many subintervals (a1, a2), (a2, a3), . . . , (as−1, as) such
that each subinterval contains at most one root αj (and none of the ai is one of these roots). Since
variations do not change unless we pass through a root we may assume that when an interval
(ai, ai+1) contains a root αj then ai, ai+1 are as close to αj as we please. Now if an interval
(ai, ai+1) has a root of p(x) which is not a root of any other polynomial in Sturm(p) then it follows
from the first property given above that

VS(ai)− VS(ai+1) = 1

where S = Sturm(p). If (ai, ai+1) does not have a root αj then it is clear that

VS(ai)− VS(ai+1) = 0.

We now examine the case when (ai, ai+1) contains a root αj of a polynomial pk with k ≥ 1. It
follows from the third property that pk−1(αj) and pk+1(αj) have opposite signs and in particular
pk−1(x), pk+1(x) do not change sign in the interval (ai, ai+1) (why?). We may now construct the
following table of possible sign changes:

x pk−1 pk pk+1 pk−1 pk pk+1

ai ≤ x < αj + ± − − ± +
αj + 0 − − 0 +

αj < x ≤ ai+1 + ∓(±) − − ∓(±) +

Now if αj is not a root of p(x) then it follows from this table that

VS(ai)− VS(ai+1) = 0.

On the other hand if αj is also a root of p(x) then the first property given above and the table
together show that

VS(ai)− VS(ai+1) = 1.

We have therefore verified the following: let p(x) ibe square free and a, b two real numbers
which are not roots of p(x) with a ≤ b. Then the number of real roots of p(x) in the interval (a, b)
is VS(a)− VS(b) where S = Sturm(p).

In fact we can generalise this a little, we can drop the assumption that p(a) ̸= 0 and p(b) ̸= 0
in which case VS(a) − VS(b) counts the number of roots of p in the half closed interval (a, b]. To
see this note that for a sufficiently small ϵ the number of roots of p in (a, b] is the same the number
of them in (a + ϵ, b + ϵ). If a is not a root of p then for all sufficiently small ϵ it is clear that
VS(a+ ϵ) = V(a). If, on the other hand p(a) = 0 then the same fact follows form the first property
above. Of course the same holds for V (b+ ϵ) and V(b). We have thus proved so we have proved

98

Theorem 7.4 (Sturm, 1835) Let p(x) be square free and let a, b be two real numbers with a ≤ b.
Then the number of real roots of p(x) in the interval (a, b] is VS(a)− VS(b) where S = Sturm(p).

We can use this theorem to find the total number of real roots of p(x) as follows. Consider an
interval (−a, a) where a > 0. For all sufficiently large a, the interval contains all the real roots of
p(x) so that the number of them is given by VS(−a)− VS(a). Now for any polynomial f(x) and all
sufficiently large a the sign of f(a) is just the sign of lc(f) while the sign of f(−a) is that of lc(f) if
f(x) has even degree and that of − lc(f) if f(x) has odd degree. So to find VS(a) for a sufficiently
large a we just find the variation of the sequence of leading coefficients of the Sturm sequence. To
find VS(−a) we look at the same sequence but negate those leading coefficients which come from
polynomials of odd degree. We summarize this result as follows: we define VS(−∞) to be the
sign variation of VS(v) as v → −∞. We know that this definition makes sense from the preceding
discussion, that is, VS(v) has the same value for all large enough negative values of v. We define
VS(∞) similarly. Our discussion then shows that the number of roots of f is VS(−∞)−VS(∞) and
moreover we can find this quantity just from the leading terms of the Sturm sequence (indeed all
we need is the sign of each leading coefficient and the degree).

If we examine the above discussion carefully we see that it depends on having a sequence S =
p, p1, . . . , pn with the following properties:

1. If α is a real root of p(x) then for a sufficiently small ϵ we have that p(x) and p1(x) have
opposite sign for all values of x in (α− ϵ, α) and the same sign in (α, α+ ϵ).

2. Two consecutive members of the sequence cannot have a common root.

3. If some pi(α) = 0 for some i with 0 < i < n then pi−1(α) and pi+1(α) have opposite signs.

4. The last polynomial pn does not vanish in the interval (a, b) and so it keeps constant sign.

Of course Sturm(p) satisfies these conditions. Surprisingly it turns out that many other sequences
which have the property can be constructed, see Akritas [2] (actually this is not really as surprising
as it might seem—why?).

Exercise 7.5 Find, by hand calculations only, the Sturm sequence of x5 − x + 1 and isolate its
real root(s). Use Axiom to check your answer (the relevant functions are sturmSequence and
realZeros).

Exercise 7.6 Let p(x) be a polynomial of degree n > 0, not necessarily square-free. Put

Fourier(p) = p(x), p(1)(x), p(2)(x), . . . , p(n)(x),

where p(i)(x) denotes the ith derivative of p(x) with respect to x. Let a, b be two real numbers which
are not roots of p(x). Let r be the number of real roots of p(x) in the interval (a, b). Then

VF (a)− VF (b) = r + 2s

where F = Fourier(p) and s is a non-negative integer.
(This result is often attributed to Boudin but it seems that Fourier was the first to discover

it. Sturm discovered his exact result after studying Fourier’s treatise on the solution of numerical
equations.)

99

Exercise 7.7 Let p(x) = anx
n + an−1x

n−1 + · · ·+ a0 be any polynomial with real coefficients and
an ̸= 0. Deduce Descartes’ rule of signs which states that

v = r + 2s

where v is the variation of an, an−1, . . . , a0, the sequence of coefficients, r is the number of real roots
of p(x) in the interval (0,∞) and s is a non-negative integer.

It is worth noting that we can state Sturm’s theorem in a form which does not assume that the
polynomial is square free. Using the comments made just after the definition of Sturm sequences
we obtain:

Theorem 7.5 Let p(x) be a non-zero polynomial with real coefficients which is not necessarily
square free. Let S = p0(x), p1(x), . . . , pn(x) be the sequence obtained in the same way as a Sturm
sequence. Assume that a, b aer real numbers with a ≤ b. Then the number of distinct roots of p(x)
in (a, b] is exactly VS(a)− VS(b).

This version of the result is useful for investigating ‘parametrized’ polynomials (i.e., some of the
coefficients are unknown).

Exercise 7.8 Use the last version of Sturm’s theorem to find conditions on b, c such that the
polynomial x2 + bx + c has two real roots. Also find conditions for the cubic x3 + cx + d to have
three real roots (note that every cubic equation can be transformed to one of this form by a simple
substitution). You will find it helpful to use Maple for this exercise!

Finally we might ask about the isolation of all the roots of a polynomial, complex as well as real
ones. For non-real roots we use isolating rectangles rather than intervals (think of complex numbers
in the Argand diagram representation). It is possible devise a method which ultimately depends on
Sturm sequences and uses exact rational arithmetic (e.g., see H. S. Wilf [64]). We look at a related
method in §7.4.

7.3 Real Root Isolation by Continued Fractions
Sturm sequences are an impressive achievement, but how efficiently can we isolate roots with them?
Unfortunately the length of the coefficients in a sequence tends to grow alarmingly. (Do not confuse
length with absolute value. For example 1/123458998435902435 is small in absolute value but large
in length.) Collins and Loos [17] report that for a certain polynomial of degree 25 with 25 bit
coefficients the Sturm sequence has a coefficient which is 1595 bits long. It might be tempting to
approximate coefficients with reals but this would destroy the reliability of the method. We proceed
to outline another method for root isolation which is much more efficient.

First of all observe that if we can isolate the positive roots of p(x) then the problem is solved
since the negative roots of p(x) are just the positive roots of p(−x) (of course we can easily decide
if 0 is a root). From now on we focus entirely on positive roots. If p(x) is to have such a root then
it is either in the interval (0, 1) or it is equal to 1 or it is in the range (1,∞). If the first possibility
holds then the root can be expressed as 1/(1+ y) for some y > 0. We can follow up this possibility
by substituting 1/(1 + y) for x in p(x) and clearing denominators to obtain a polynomial pI(y)
whose positive roots give us all the possible values for y.

Similarly if the third possibility holds then the root can be expressed as 1+ y with y > 0. Here
we can follow up this possibility by substituting 1 + y for x in p(x) to obtain a polynomial pT (y)
whose positive roots give us all the possible values for y.

100

Let us illustrate this process by using

p(x) = x3 − 7x+ 7.

By inspection we see that 1 is not a root. For roots in (0, 1) we wish to obtain pI(y) as defined
above. This can be achieved by first replacing x with 1/x, clearing the denominator power of x and
finally substituting 1 + y for x. Note that the first stage of this just gives us a polynomial which is
p(x) but with the coefficients taken in reverse order, i.e., 7x3 − 7x2 + 1. Note that we must take
into account any zero coefficients which occur: x3 − 7x + 7 = x3 + 0x2 − 7x + 7 so reversing the
coefficients results in 7x3 − 7x2 + 0x+ 1 = 7x3 − 7x2 + 1. This then yields

pI(y) = 7y3 + 14y2 + 7y + 1.

Now this polynomial cannot possibly have a positive root since all of its coefficients are positive.
So p(x) has no roots in (0, 1).

For roots in (1,∞) we replace x by 1 + y in p(x) to obtain

pT (y) = y3 + 3y2 − 4y + 1.

By inspection 1 is not a root of pT (y). We proceed to investigate the possible roots in (0, 1) and
(1,∞). The first possibility leads us to

pTI(z) = z3 − z2 − 2z + 1,

while the second leads to
pTT (z) = z3 + 6z2 + 5z + 1.

Note that pTT (z) has no positive roots so we can conclude that pT (y) has no roots in (1,∞). We
now investigate the positive roots of pTI(z). Again by inspection we see that 1 is not a root. For
roots in (0, 1) we obtain

pTII(w) = w3 + w2 − 2w − 1

while for roots in (1,∞) we obtain

pTIT = w3 + 2w2 − w − 1.

We can cut the investigation short by making use of the important fact (to be proved below) that
if a polynomial has real coefficients which present exactly one sign variation then the polynomial
has exactly one positive root. Thus both pTII(w) and pTIT (w) have exactly one positive root. It
follows that (0,∞) is an isolating interval for the roots of both polynomials (if we don’t like ∞ as
an endpoint then we can use Cauchy’s bound given in theorem 7.3; ∞ is a good choice here as we
shall see shortly). Note that pTII(w) was obtained from p(x) by the sequence of transformations

x 7→ 1 + y, y 7→ 1

1 + z
, z 7→ 1

1 + w
,

which can be combined into the single transformation

x 7→ 1 +
1

1 +
1

1 + w

,

101

and this simplifies to
x 7→ 3 + 2w

2 + w
.

As a function of w this is strictly increasing and so if (a, b) isolates the positive root of pTII(w)
then ((3 + 2a)/(2 + a), (3 + 2b)/(2 + b)) isolates the corresponding root of p(x). In our case we
have (0,∞) which yields the interval (3/2, 2) (here we have used the fact that (3 + 2b)/(2 + b) =
(3/b+ 2)/(2/b+ 1) → 2 as b → ∞). The sequence of transformations for pTIT (w) is

x 7→ 1 + y, y 7→ 1

1 + z
, z 7→ 1 + w,

which can be combined into the single transformation

x 7→ 1 +
1

2 + w
,

which simplifies to
x 7→ 3 + w

2 + w
.

This is a strictly decreasing function of w and so it gives us (1, 3/2) as the isolating interval for the
root of p(x).

Summing up we have found that p(x) has exactly two positive roots which are isolated by
(1, 3/2) and (3/2, 2) (see figure 4).
The preceding example illustrates an easy consequence of a remarkable fact:

Theorem 7.6 (Vincent, 1836) Let p(x) be a square free polynomial with rational coefficients.
Consider a sequence of transformations of p(x) by

x 7→ a1 +
1

x
, x 7→ a2 +

1

x
, x 7→ a3 +

1

x
, . . .

where a1 is an arbitrary non-negative integer and a2, a3, . . . are arbitrary positive integers. Then
after finitely many steps the sequence of coefficients of the transformed polynomial has either zero
or one sign variation.

For a proof see Akritas [2] (where an upper bound on the number of substitutions is also provided).

Corollary 7.1 Let p(x) be a square free polynomial with rational coefficients. Consider a sequence
of transformations of p(x) where each transformation is either of the form x 7→ 1+x or x 7→ 1/(1+x).
Then after finitely many steps the sequence of coefficients of the transformed polynomial has either
zero or one sign variation.

Proof Exercise 2

Note that the preceding theorem is not guaranteed to hold if p is not square free. For example
take p = (2x2 − 1)2 = 4x4 − 4x2 + 1 then pIIT = pI so that the sequence repeats for ever. It is
however true that after finitely many steps the resulting polynomial either has no sign variations in
its coefficients (and hence no positive root) or has exactly one positive root (but might have more
than one sign variation). Of course the example p given has just one positive root already.

A polynomial whose coefficients present no sign variations clearly cannot have a positive root.
Let us now settle the other possibility.

102

w3 + w2 − 2w − 1 w3 + 2w2 − w − 1

z3 − z2 − 2z + 1 z3 + 6z2 + 5z + 1

y3 + 3y2 − 4y + 17y3 + 14y2 + 7y + 1

x3 − 7x+ 7

TI

TI

TI

Figure 4: Positive roots of x3 − 7x+ 7 isolated by (1, 3/2) and (3/2, 2).

103

Theorem 7.7 Let p(x) be a polynomial with real coefficients which have exactly one sign variation.
Then p(x) has exactly one positive real root (any other real roots will either be 0 or negative).

Proof The result follows from Descarte’s rule (see Exercise 7.7) but we give a simple proof of this
particular case using induction on m = deg(p(x)). Note that m must be at least 1 (otherwise there
can be no sign variation in the coefficients!). The result is obvious for m = 1. For the induction
step assume m > 1 and observe that, without loss of generality, we may put

p(x) = (amxm + · · ·+ an+1x
n+1)− (anx

n + · · ·+ a0),

where m > n, the ai are all non-negative and am > 0, a0 > 0. Let

h(x) = amxm + · · ·+ an+1x
n+1,

t(x) = anx
n + · · ·+ a0.

First of all p(x) must have at least one positive root because it changes sign in the interval (0,∞):
we have p(0) = −a0 < 0 while the sign of p(b) as b → ∞ is that of am which is positive.

It remains to show that p(x) has at most one positive root. Consider the derivative of p(x):

p′(x) = h′(x)− t′(x).

This has degree m − 1 and its coefficients have either zero or one sign variation. If they have no
sign variation then p′(x) is strictly positive for all x > 0, i.e., p(x) is an increasing function of x for
x > 0 and so it can have at most one root satisfying x > 0. Otherwise we know from the induction
hypothesis that p′(x) has exactly one positive root which means that the graph of p(x) has exactly
one turning point for x > 0. Now p′(0) < 0 and p′(b) > 0 for all sufficiently large b. These facts
taken together mean that p(x) starts by decreasing in some range 0 < x < d, then has a turning
point at x = d (the unique positive root of p′(x)) and then increases in the range d < x < ∞. It
follows that p(x) cannot have more than one positive root (draw pictures). 2

Exercise 7.9 Give another proof of the preceding theorem by showing that the graphs of the poly-
nomials h(x) and t(x) (defined in the proof) intersect exactly once for x ≥ 0.

The meaning of Vincent’s theorem is now clearer: any sequence of transformations as described in
the statement of the theorem leads to a polynomial which has at most one positive root and whose
coefficients reveal this fact. The first part of this statements is not at all surprising: transformations
of the form x 7→ a + x with a > 0 serve to pull the roots towards the negative part of R (if the
roots of p(x) are α1, . . . , αs then the roots of p(a+ x) are α1 − a, . . . , αs − a). Transformations of
the form x 7→ 1/x send those roots in the interval (0, 1) to roots in the interval (1,∞) while roots
which are in (1,∞) are sent to ones in (0, 1) while 1 is kept fixed (if the roots of p(x) are α1, . . . , αs

then the roots of xmp(1/x) are 1/α1, . . . , 1/αs). The second part really is surprising. For example
x2 − 2x + 2 has no real roots even though its coefficients have at least one sign variation. On the
other hand the coefficients of x3−x2+x−1 = (x−1)(x−

√
−1)(x+

√
−1) have two sign variations

even though the polynomial has exactly one positive real root.
The two theorems give us the basis of an algorithm for the isolation of positive roots. There

is one more important observation to be made in order to obtain an efficient algorithm. In the
example we used transformations of the form x 7→ 1/(1+x) and x 7→ 1+x. Consider a polynomial
with more than one positive root and whose smallest such root is ϵ + 106 where ϵ ≥ 0. Then we

104

will need 106 transformations of the second kind before having a chance of separating the smallest
root from the others. It would be much better to have a reasonable integer estimate b, say, of the
smallest root so that we can get near it faster by a single transformation of the form x 7→ b + x.
How can we find such a bound? The positive roots of xdeg(p)p(1/x) are are of the form 1/α where
α is a positive root of p(x). Thus if B is an upper bound on the positive roots of pI(x) then each
positive root α of p(x) satisfies 1/α ≤ B so that 1/B truncated to an integer is a lower bound on
the roots as required. Of course there is no guarantee that the lower bound obtained really is the
integer part of the smallest root, in practice it will be smaller and so we have to carry out at least
one substitution of the form x 7→ 1+x after the substitution x 7→ b+x applied to some q(x) (which
has been obtained from p(x) by a series of transformations). However we must also check for the
possibility that q(x) has roots in (0, 1) otherwise they will be lost. For this we could simply use the
transformation x 7→ 1/(1 + x) applied to q(x). However we can save effort by using the following

Theorem 7.8 (Budan,1807) Let p(x) be square free of degree m > 0 and let a, b be two real
numbers with a < b. Let Va, Vb be the variation of the coefficients of p(a+x), p(b+x) respectively.
Let r be the number of real roots of p(x) in (a, b). Then

1. Va ≥ Vb.

2. r ≤ Va − Vb.

3. (Va − Vb)− r is an even number.

(The proof is similar to that of Fourier’s theorem of Exercise 7.6.) Budan’s theorem tells us that if
the coefficients of q(x) and q(1+x) have the same number of sign variations then q(x) has no roots
in (0, 1) and so there is no need to use a transformation of the form x 7→ 1/(1 + x).

The algorithm can be viewed as an evolving tree. At each vertex of the tree we keep a polynomial
q(x), the transformation used to obtain q(x) from the original input polynomial p(x) and the
variation of the coefficients of q(x). At the root of the tree we have p(x), the identity transformation
and the variation of the coefficients of p(x). Consider now an arbitrary vertex of the tree with
polynomial q(x), transformation M(x) and variation v. If v > 1 then we must apply further
transformations to q(x) (hence to p(x)). These are as described above and lead to either one or two
children of the current vertex. If v = 0 then the vertex leads to no positive roots and so we can
drop it. If the v = 1 then q(x) has exactly one positive root which corresponds to a positive root
of p(x). Here we can isolate the root of q(x) by (0,∞). Now it is easy to see that

M(x) =
a1x+ a0
b1x+ b0

where a1b0 − a0b1 ̸= 0 and a0, a1, b0, b1 ≥ 0. Clearly M(x) is continuous for all x unless b1 ̸= 0 in
which case there is a discontinuity at x = −b0/b1. By differentiating M(x) we see that it is strictly
increasing if a1b0 − a0b1 > 0 and otherwise it is strictly decreasing. Moreover if r is the unique
positive root of q(x) then the corresponding root of p(x) is M(r). It follows that if (a, b) isolates r
then M(r) is isolated by the open interval whose unordered endpoints are M(a), M(b). In our case
we have a = 0 which gives us M(a) = a0/b0 and b = ∞ which we can view as a limit operation so
that M(b) = a1/b1. We must allow for two possible ‘degenerate’ cases. If b1 = 0 then M(x) does
not have a limit as x → ∞ so instead of (0,∞) we isolate the positive root of q(x) by (0, B) where B
is an upper bound on the positive root of q(x), e.g., as given by Theorem 7.3 but see Theorem 7.9

105

below. This gives us the endpoints a0/b0 and M(B). The other possible degenerate case is b0 = 0
but this cannot happen (prove this).

In fact we can take advantage of the special nature of q and can use a simpler upper bound for
its unique positive root than than the one given by Theorem 7.3.

Theorem 7.9

p(x) = amxm + am−1x
m−1 + · · ·+ an+1x

n+1 − anx
n − · · · − a0

be a polynomial of degree m whose coefficients have only one sign variation (so ai ≥ 0, for 0 ≤ i ≤ m
while am > 0 and a0 > 0). Then

1 +
max0≤j≤n aj∑m

i=n+1 ai

is a strict upper bound on the unique positive root of p(x).

Proof Let α be the positive root of p and set a = max0≤j≤n aj . If α ≤ 1 the claim is trivial so
assume that α > 1. Then we have

(am + am−1 + · · ·+ an+1)α
n+1 < (amαm−n−1 + am−1α

m−n−2 + · · ·+ an+1)α
n+1

= anα
n + an−1α

n−1 + · · ·+ a0

≤ a(αn + αn−1 + · · ·+ 1)

= a(αn+1 − 1)/(α− 1)

< aαn+1/(α− 1)

Thus (am + · · ·+ an+1)(α− 1) < a, the claim now follows. 2

Exercise 7.10 Prove the claim made above about M(x), i.e., it has the form (a1x+a0)/(b1x+ b0)
with a1b0 − a0b1 ̸= 0. (Hint: the transforms applied at individual steps are all invertible hence so
is any transform composed of them.)

We now present the algorithm more formally Throughout the algorithm we check for the possi-
bility that we have hit on an exact root and take advantage of the situation whenever it occurs.

Algorithm: CFISOL(p(x)) 7→ [E,A]

(p(x) is square free. E is a list of (some of the) exact non-negative roots of p(x) and A is a list
of isolating intervals for the rest of the non-negative roots of p(x).)

1. if p(0) = 0 then E := [0]; A := []; pw(x) := p(x)/x

else E := []; A := []; pw(x) := p(x)

fi;

2. v := VAR(pw(x));
if v > 1 then T := [[pw(x), x, v]] (work to be done)
elif v = 1 then (exactly one positive root)
T := [];

106

u := UBPR(pw(x));
if pw(u) = 0 then E := cons(u,E)

else A := [(0, u)]

fi
fi;

3. while T ̸= [] do
remove the first element [pM (x),M(x), vM] from T ;
b := LBPR(pM (x));
if b ≥ 1 then
pM (x) := Moebius(pM (x), b+ x);
M(x) := M(b+ x);
if pM (0) = 0 then E := cons(M(0), E); pM (x) := pM (x)/x fi;

fi;
v1 := vM ;
pM1 := Moebius(pM (x), 1 + x);
M1 := M(1 + x);
if pM1

(0) = 0 then E := cons(M1(0), E); pM1
(x) := pM1

(x)/x fi;
vM1

:= VAR(pM1
);

if vM1 > 1 then T := cons([pM1(x),M1(x), vM1], T)

elif vM1
= 1 then A := append(A, [make_interval(pM1

(x),M1(x))])

fi;
if v1 ̸= vM1

then (pM (x) might have roots in (0, 1))
pI(x) := Moebius(pM (x), 1/x);
if lc(pI(x)) < 0 then pI(x) := −pI(x) fi;
MI := M(1/x);
pM1

:= Moebius(pI(x), 1 + x);
M1 := MI(1 + x);
vM1 := VAR(pM1(x);
if vM1

> 1 then T := cons([pM1
(x),M1(x), vM1

], T)

elif vM1
= 1 then A := append(A, [make_interval(pM1

(x),M1(x))])

fi
fi

od

The meaning of the various function calls is as follows:

107

cons(a, L): inserts the element a at the head of the list L.

VAR(p(x)): returns the variation in the sequence of coefficients of p(x).

UBPR(p(x)): produces an upper bound on the positive roots of p(x) using Theorem 7.3.

LBPR(p(x)): produces a lower bound on positive roots of p(x) as discussed above.

make_interval(pM (x),M(x)): produces an isolating interval for a positive root of p(x) as described
above.

Moebius(q(x),M(x)): transforms q(x) by using M(x). In general a transformation of the form

M(x) =
a1x+ a0
b1x+ b0

where a1b0 − a0b1 ̸= 0 is called a Moebius transformation. To transform q(x) according to
M(x) we send it to (b1x+ b0)

nq(M(x)) where n = deg(q(x)).

Exercise 7.11 In some applications we are simply interested in knowing whether or not a poly-
nomial has a real root in an interval [a, b]. Modify the algorithm so that it answers this question
directly without computing any isolating intervals for roots.

We have one final but important efficiency consideration. The transforms used by the algorithm
are either of form x 7→ c + x or x 7→ 1/x. The second type are easy to implement efficiently since
all we have to do is reverse the order of the coefficients of the polynomial. For transforms of the
first type we require the expansion of p(c+x). If this is carried out naïvely then efficiency is greatly
impaired.

7.3.1 The Ruffini–Horner Method

We are given p(x) and c and wish to find the coefficients of the expansion of p(x+ c). Observe that
if we can express p(x) in terms of powers of x− c then we are done for we have:

p(x) = a′0(x− c)m + a′1(x− c)m−1 + · · ·+ a′m

so that
p(x+ c) = a′0x

m + a′1x
m−1 + · · ·+ a′m

i.e., the coefficients we are seeking are b0, b1, . . . , bm. This suggests the following approach: put
pn(x) = p(x) and then

pm(x) = (x− c)pm−1(x) + rm,

pm−1 = (x− c)pm−2(x) + rm−1,

...
p1 = (x− c)p0 + r1

p0 = (x− c) · 0 + r0.

108

Of course rm, rm−1, . . . , r0 are all constant and indeed ri = pi(c) for each i. This scheme gives us

p(x) = (x− c)pm−1(x) + rm

= (x− c)2pm−2(x) + (x− c)rm−1 + rm

...
= (x− c)mr0 + (x− c)m−1r1 + · · ·+ rm,

which is the required expansion. Let us put

p(x) = a0x
m + a1x

m−1 + · · ·+ am,

and
pm−1(x) = b0x

m−1 + b1x
m−2 + · · ·+ bm−1.

Then it is easy to see that

b0 = a0, bi = ai + cbi−1, 1 ≤ i ≤ m− 1.

This method of obtaining pm−1(x) from p(x) is called synthetic division. Clearly we can then repeat
the process to obtain pm−2 from pm−1 etc. One important observation is that if c = 1 then no
multiplications are needed at all.

Exercise 7.12 How many multiplications and additions/subtractions are needed in the worst case
for the Ruffini–Horner method? Consider also the special case when c = 1.

We note also that in the root isolation algorithm we often evaluate a polynomial at some number.
Again if this is carried out naïvely then efficiency is impaired. Put

p(x) = pmxm + pm−1x
m−1 + · · ·+ p0.

Then p(c) can be computed as

p(c) = (· · · ((pmc+ pm−1)c+ pm−2)c+ · · ·+ p1)c+ p0

which involves at most m multiplications and m additions/subtractions. This is frequently called
Horner’s rule and is a rare example of an algorithm which is optimal: any method which can take
an arbitrary polynomial and real number and return the value of the polynomial at the number
must use at least as many multiplications and additions/subtractions as Horner’s rule does.

Finally we note that the continued fractions method can also be used to approximate roots. To
be specific given an isolating interval for a positive root of p(x) and the Moebius transform which
was used to obtain the interval then we can approximate the root to any desired degree of accuracy
by applying appropriate Moebius transforms till we either obtain an exact root or the isolating
interval is small enough; see [2] for details. Of course the bisection method (i.e., the algorithm
APPROX of p.91) is very efficient as it halves the size of the isolating interval with each iteration.

Exercise 7.13 Consider a system of finitely many polynomial equations and inequalities (e.g.,
p(x) ≥ (x)) where each polynomial comes from Q[x]. The problem is to find all the solutions to the

109

d

c

ba

Figure 5: The open rectangle (a, b) + i(c, d) in the Argand plane.

system. Assuming that there is at least one non-trivial equation, show how to reduce the problem
to solving finitely many systems of the form

p(x) = 0; q1(x) > 0, . . . , qr(x) > 0, (∗)

where the solutions to the original system are obtained by taking the union of the solutions of the
finitely many new systems (∗).

Give an algorithm for producing all the solutions to a system (∗); the output consists of either
exact roots of p(x) or open isolating intervals for them.

7.4 Complex Roots
Although our main concern is with real roots we now give an outline of a method for isolating the
complex roots of a polynomial. Here we produce open rectangles of the form (a, b) + i(c, d), see
Figure 5.

The outline of the method is quite simple: suppose that given a non-zero polynomial p(z) and
a rectangle R of the complex plane we have a method of counting how many roots of p(z) (real or
complex) lie inside R. Using Theorem 7.2 we can produce a square which includes all the roots of
p(z). Now we can cut this into four equal smaller squares and count the number of roots in each
square. If some square has only one root then it forms part of the output. If it has no roots then
it can be discarded otherwise we recurse. (In fact, for reasons which will become clear later on, we
cannot always subdivide into squares but have to use rectangles instead.)

110

The first problem we face is how to count roots in a rectangle. This has a very beautiful solution
which comes from the basic theory of functions of a complex variable. The method is explained
more easily if we consider counting the number of zeros of p(z) inside a simple continuous closed
curve C (by simple we mean that the curve does not intersect itself). Putting z = x + iy we can
write

p(z) = u(x, y) + iv(x, y)

where u(x, y), v(x, y) have rational coefficients. We think of C as lying in the (x, y)-plane and the
image of C, which is another curve (not necessarily simple), as lying in the (u, v)-plane. Note that
the image curve P (C) passes through the origin of the (u, v)-plane if and only if there is a root of
p(z) on C. From now on we assume that no root of p(z) lies on C. If C is deformed continuously
to another curve C ′ then of course p(C) is also deformed continuously to p(C ′). Moreover a curve
used during the deformation has a root of p(z) if and only if one of the image curves passes through
the origin of the (u, v)-plane. Moreover if C is contracted to a point then the same happens to
the image. It is now clear that the interior of C has a root of p(z) if and only if when we try to
contract p(C) continuously to a point some intermediate curve passes through the origin of the
(u, v)-plane. As C is contracted the image curve passes through the origin at least once for each
root of p(z) which is in the interior of C. In fact the image curve is wound around the origin at
least once for each root. For a better understanding of this suppose first of all that the interior of
C has only one root of p(z). Consider shrinking C to smaller and smaller curves around the root
(none of which passes through the root). Then none of the image curves passes through the origin
of the (u, v)-plane but as C shrinks the image curves also shrink and enclose the origin. Since no
intermediate curve has passed through the origin it follows that all curves including C enclose the
origin. Another way of phrasing this is to imagine that we are told to walk around p(C) holding a
piece of elastic whose other end is tied to a pole stuck into the origin of the (u, v)-plane. We stop
upon arriving at the starting point. If by the end of the walk the elastic has wound round the pole
at least once then there must be a root of p(z) in the interior of C otherwise the interior of C has
no such roots. (At the start the elastic is not wound around the pole at all.) This gives us a test
for detecting the presence of roots but we also want to count them.

Let us be more precise about the process of walking around p(C). We do not simply view this
as following a path which has already been traced out. Imagine that C is parametrized by a time
parameter t, i.e., we have a continuous function τ(t) with the property that τ(0) = τ(1) and which
traces out C as t varies from 0 to 1 (the choice of 0 and 1 as start and end times is arbitrary but has
become standard—in fact 0 is an excellent choice for computational reasons). Now As t varies the
points of the image of C are given by p(τ(t)) and our walk consists of following these points in the
order of generation. Note that this could involve us in going round p(C) several times, going faster
for some parts rather than others etc. At the end of the walk we see how many times the elastic
has wound around the pole and call this the winding number of p(z) on C. What we have now is
that the interior of C contains at least as many roots as the winding number. Further investigation
shows that a root of multiplicity d contributes precisely d to the winding number. Let us verify
this for

p(z) = (z − α)d.

We can take C to be a circle of unit radius and centre α. Thus C is given by

τ(t) = α+ sin(2πt) + i cos(2πt).

The image of C is thus
(sin(2πt) + i cos(2πt))d

111

•α3

•α1•α2

Figure 6: Deformed closed curve around the roots α1,α2, α3 of p(z).

and by de Moivre’s theorem this is the same as

sin(2dπt) + i cos(2dπt).

which traces the unit circle with centre at the origin exactly d times as t ranges from 0 to 1. For
the general case you might like to contemplate Figure 6. Finally as an illustration let p(z) = z3−1.
The roots of this polynomial are all included in the square (−2, 2) + i(−2, 2) whose image under
p(z) is shown in Figure 7

Exercise 7.14 Write an Axiom function contour(p,z,a,b,c,d) which takes a polynomial p ∈
Q[z] and plots the image of the rectangle (a, b) + i(c, d).

The preceding argument is an intuitive explanation of a rigorous theorem which holds for func-
tions which are more general than polynomials. For details see Henrici [31].

Note that in order for the bisection algorithm to work we must ensure that each root has
multiplicity 1 by working with the square free part of p(z). We shall assume from now on the p(z)
is square free.

How can we compute the winding number? First of all we label the quadrants of the plane in
the usual way (see Figure 8). Let w0 be the number of times that we cross from quadrant I to
quadrant II or from quadrant III to quadrant IV. Let w1 be the number of times that we cross from
quadrant II to quadrant I or from quadrant VI to quadrant III. Then it is clear that the winding
number is given by (w0−w1)/2 (assuming that we traverse the curve in an anticlockwise direction,
otherwise we obtain the negation of the winding number). In particular we are interested in the
winding number when C is a rectangle (a, b)+ i(c, d). We will always consider traversing rectangles
starting at the lower left hand corner, i.e., the point a+ ic, and going round anti-clockwise. We can
break this up into the traversal of the four edges that make up the rectangle—minus the start-point

112

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

Figure 7: The image of (−2, 2) + i(−2, 2) under z3 − 1.

113

II

III IV

I

Figure 8: The four quadrants of the plane.

Figure 9: Some of the possible behaviours of the image curve near the roots of uz1z2(t).

of each edge in order to avoid duplicating it. We count the contribution that each segment makes
to the winding number and add up. The problem therefore reduces to considering the image of a
line segment.

The line segment joining a point z1 to z2 is given by z1 + (z2 − z1)t and we can easily compute
polynomials uz1z2 , vz1z2 ∈ Q[t] such that the image of the segment under p(z) is uz1z2(t)+ ivz1z2(t).
The times at which the image curve can cross from one quadrant to another are given by the real
roots of uz1z2(t) which lie in (0, 1]. These can be isolated by using the continued fractions method.
For each root we have to decide which quadrants, if any, are crossed by the curve as t passes through
the root. Figure 9 shows some of the possibilities that must be considered. The essential idea is
to find isolating intervals for the roots of uz1z2(t) in which vz1z2(t) has constant sign. Moreover we
ensure that the endpoints of such an interval are not roots of uz1z2(t). With these properties we
can then detect which quadrants, if any, are being crossed around each root.

Exercise 7.15 The real root isolation algorithm might return some exact roots as well as isolating

114

N

M

D C

BA

Figure 10: Subdividing a rectangle.
.

intervals. How do we deal with these? (Avoid the obvious answer that we can replace them with
isolating intervals—it is correct but boring.)

Exercise 7.16 There is an extra complication when the end of a segment is on the vertical axis
(i.e., the full curve seems to be just about to cross from one quadrant to another). How do we deal
with this?

Computing winding numbers is an expensive process and so it is worth avoiding this whenever
possible. We proceed to outline some improvements to the original naïve algorithm which are
extremely effective. First of all the subdivision into four parts is better carried out in two stages.
First we subdivide horizontally and then vertically. So what? The idea is that for each rectangle we
do not just remember its winding number but rather the contributions to the winding number of
the four edges which make it up. Consider Figure 10. Upon subdivision by MN we need only work
out the winding number contributions of AN , MN and ND, the others can be deduced from the
old data and these new numbers. (Observe that the winding number is just negated if we traverse
the same edge but in the opposite direction. Of course the contribution from traversing an edge
need not be an integer.) If one of the smaller rectangles has winding number 1 then it can be
output. If it has winding number equal to 0 then it can be discarded. Otherwise it goes through
to be subdivided horizontally.

Before making any further improvements we must address one difficulty. The method of winding
numbers requires that no root of p(z) lies on the edges of the rectangle. At the outset this is fine
because Theorem 7.2 gives us a square which properly encloses all the roots of p(z). But as we
subdivide rectangles it is possible to hit a root. This can be detected as follows. If the image curve
of a segment is u(t) + iv(t) then the segment contains a root of p(z) if and only if u(t), v(t) have a
common root in [0, 1]. Thus we just test w(t) = gcd(u(t), v(t)) for roots in [0, 1]. Actually we need
only test for roots in (0, 1) (why?) and by using the transformation t 7→ 1/(1+ t) we can reduce this
to testing for positive roots. Now if it so happens that a proposed subdivision segment contains a
root of p(z) then we simply move it and try again. This process is bound to terminate since in any
rectangle there are only finitely many roots of p(z).

115

All the methods which have been described so far work even if the coefficients of p(z) are complex
numbers (with rational real and imaginary parts). However for p(z) with rational coefficients we
can exploit a well known property of the roots: if α is a root of p(z) then so is its complex conjugate
ᾱ. Thus the roots of p(z) are either real or they come in pairs x + iy, x − iy with y ̸= 0. This
suggests that we isolate the real roots by the continued fractions method and then isolate only the
roots with positive imaginary part—for if (a, b)+i(c, d) isolates x+iy then (a, b)+i(−d,−c) isolates
x− iy. Unfortunately there is a snag: what rectangle do we use at the start? (this rectangle must
enclose only those roots of p(z) with a strictly positive imaginary part). It would be natural to
take the same rectangle as in the original algorithm but use only its upper half (i.e., cut it along
the x-axis). Alas this is no good if p(z) happens to have any real roots at all, otherwise it is fine
(of course we will know if there are any real roots from the use of the continued fractions method).

Exercise 7.17 Actually if we are a little lucky with the real root finding process we can still proceed
as though p(z) had no real roots. Explain.

So we have now reduced to the case when p(z) has at least one real root. We could look for a lower
bound δ on the distance between the roots of p(z) because if b is the bound given by Theorem 7.2
then we can use the rectangle (δ/2, b) + i(−b, b). Such a bound can be obtained from

Theorem 7.10 (Mahler) Let p(z) = a0z
m + a1z

m−1 + · · · + am be a polynomial with integer
coefficients of degree at least 2. Let ∆ be the minimum distance between its roots. Then

∆ ≥
√
3m−(m+1)/2(|a0|+ |a1|+ · · ·+ |am|)−(m−1).

Proof See Akritas [2] 2

Unfortunately the bounds obtained from this theorem tend to be extremely pessimistic and involve
us in working with numbers of large representation size. Their use would therefore slow the algo-
rithm down! (The theorem is extremely important in analyzing the worst case behaviour of root
finding algorithms.) We are thus forced to seek an alternative solution. Let (a, b) + i(c, d) be a
rectangle which isolates some roots of p(z) and has no roots on its edges. We make two observations.

1. If d < 0 then the rectangle isolates only roots with negative imaginary parts. We can just
discard this because by the end of the algorithm we will have isolated the conjugate roots
(with positive imaginary parts) and we can then recover the ‘lost’ roots.

2. If c < 0, d > 0 and −d < c then it is safe to split the rectangle into (a, b) + i(−c, d) and
(a, b) + i(c,−c). The first of these isolates only roots with positive imaginary parts. We have
also made a gain because the winding number of the splitting segment is just the negation of
the known number of the segment which joins a+ ic to b+ ic (why?).

With these modifications the algorithm tends to discard many rectangles and focuses on real roots
and complex roots with positive imaginary part. At the start of the algorithm it is a good idea not
to use a square but a rectangle of the form (−b, b) + i(−1, b). Note that in the output from this
modified version those rectangles which straddle the x-axis isolate real roots.

Exercise 7.18 The root finding algorithm has to carry out a great deal of complex number arith-
metic. The naïve method for mutliplying two complex numbers uses four multiplications, one

116

addition and one subtraction. The number of multiplications can be reduced to three as follows:
given x1 + iy1 and x2 + iy2 compute

s1 := (x2 + y2) ∗ x1;

s2 := −y2 ∗ (x1 + y1);

s3 := x2 ∗ (y1 − x1);

then the real part of (x1 + iy1)(x2 + iy2) is s1 + s2 and the imaginary part is s1 + s3. Do you think
this is likely to help in speeding up the algorithm? Discuss pros and cons.

117

8 Bibilography
1. S. S. Abhyankar, Albebraic Geometry for Scientists and Engineers, Mathematical Surveys and

Monographs, 35, AMS (1990).

2. A. G. Akritas, Elements of Computer Algebra With Applications, Wiley, (1989).

3. W. M. Anderson, A Survey of Polynomial Factorisation Algorithms, M.Phil. Thesis, Depart-
ment of Computer Algebra, University of Edinburgh, Scotland.

4. D. Bayer and M. Stillman, A theorem on refining division orders by the reverse lexicographic
orders. Duke J. Math. 55, (1987) 321–328.

5. T. Becker and V. Weispfenning, Gröbner Bases. A Computational Approach to Commutative
Algebra (in cooperation with H. Kreidel). Springer, New York (1993).

6. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill (1968).

7. M. Bronstein, The Transcendental Risch Differential Equation, JSC, 9, 1 (1990) 49–60.

8. B. Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-
dimensional Polynomial Ideal (German), PhD Thesis, University of Insbruck (Austria), Math.
Inst. (1965).

9. B. Buchberger, An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations
(German), Aequationes Mathematicae, 4, 3, (1970) 374–383.

10. B. Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction of
Gröbner Bases, EUROSAM79, Lecture Notes in COmputer Science 72, E. W. Ng (editor),
Springer (1979) 3–21.

11. B. Buchberger, G. E. Collins and R. Loos (editors), Computer Algebra—Symbolic and Alge-
braic Computation. Computing Supplementum 4, Springer (1983).

12. B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, in Mul-
tidimensional Systems Theory, N. K. Bose (editor), D. Reidel Publishing Company (1985).

13. B. W. Char, K. O. Geddes, W. M. Gentleman and G. H. Gonnet, The design of Maple: A
compact, portable, and powerful computer algebra system, Proceedings of Eurocal ’83, pp.
101–115 (April 1983). Springer Lecture Notes in Computer Science no. 162.

14. B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan and S. M. Watt, First Leaves:
A Tutorial Introduction to Maple, WATCOM Publications Ltd., Waterloo, Ontario, Canada
(1988).

15. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt,
Maple V Language Reference Manual, Springer (1992).

16. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monaan, and S. M. Watt,
Maple V Library Reference Manual, Springer (1992).

17. G. E. Collins and R. Loos, Real Zeros of Polynomials, in [11].

118

18. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press (1990).

19. D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms: an Introduction to Com-
putational Algebraic Geometry and Commutative Algebra, Springer (1992).

20. J. H. Davenport, On the Integration of Algebraic Functions, Springer Lecture Notes in Com-
puter Science 102, Springer (1981).

21. J. H. Davenport, Y. Siret and E. Tournier, Computer Algebra: systems and algorithms for
algebraic computation, Academic Press (1988).

22. P. J. Davis and R. Hersh, The Mathematical Experience, Penguin Books (1981).

23. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Springer, New
York (1995).

24. J. C. Faugère, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional
Gröbner bases by change of ordering. J. Symbolic Computation 16, (1993) 329–344.

25. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press
(1999).

26. K. O. Geddes, S. R. Czapor and G. Labahn, Algorithms for Computer Algebra, Kluwer Aca-
demic Publishers (1992).

27. R. W. Gosper, Decision Procedure for Indefinite Hypergeometric Summation, Proc. National
Academy of Sciences, USA, 75, 1 (1978) 40–42.

28. D. Harper, C. Woof and D. Hodgkinson, A Guide to Computer Algebra Systems, Computer
Algebra Support Project, Computer Laboratory, University of Liverpool, (1989).

29. D. Harper, C. Woof and D. Hodgkinson, A Guide to Computer Algebra, Wiley, (1991).

30. E. Horowitz, Algorithms for partial fraction decomposition and rational function integration,
Proc. 2nd Symp. on Symbolic and Algebraic Computation, S. K. Petrich (ed), ACM (1971).

31. P. Henrici, Applied and Computational Complex Analysis, Vol. I, Wiley–Interscience, (1974).

32. C. M. Hoffmann, Geometric and Solid Modeling, an Introduction, Morgan Kaufmann, (1989).

33. D. T. Huynh, A superexponential lower bound for Gröbner bases and Church-Rosser commu-
tative Thue systems. Inf. and Control 68, (1986) 196–206.

34. C. Jordan, Calculus of Finite Differences, Sopron, Röttig u. Romwalter (1939).

35. E. Kaltofen, Factorization of Polynomials, in [11].

36. A. Karatsuba and Yu. Offman, Dokl. Akad. Nauk SSSR 145 (1962) 293–294. (English
translation: Multiplication of multi-digit numbers on automata, Soviet Phys. Dokl. 7 (1963)
595–596).

37. M. Karr, Summation in Finite Terms, JACM, 28, 2 (1981) 305–350.

119

38. M. Karr, Theory of Summation in Finite Terms, JSC, 1, 3 (1985) 303–315.

39. D. E. Knuth, Seminumerical Algorithms, (Second Edition), Addison-Wesley (1981).

40. J. C. Lafon, Summation in Finite Terms, in [11].

41. A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring Polynomials with Rational Coefficients,
Math. Ann., 261 (1982) 515–534.

42. Y. N. Lakshman, A single exponential bound on the complexity of computing Gröbner bases
of zero dimensional ideals. In Effective Methods in Algebraic Geometry, Mora, T., Traverso,
C. (eds.). Birkhäser, Boston (1991).

43. E. W. Mayr and A. R. Meyer, The Complexity of the Word Problem for Commutative Semi-
groups and Polynomial Ideals, Advances in Math., 46, (1982) 305–329.

44. M. Mignotte, An inequality about factors of polynomials, Mathematics of Computation, 28
(1974) 1153–1157.

45. B. Mishra and C. Yap, Notes on Gröbner Bases, Information Science, 48 (1989) 219–252.

46. M. Mignotte, Mathematics for Computer Algebra, Springer (1992).

47. H. M. Möller and T. Mora, Upper and lower bounds for the degree of Gröbner bases. In
EUROSAM’84, International Symposium on Symbolic and Algebraic Computation, Fitch, J.
(ed.), LNCS 162. Springer (1984).

48. F. Pauer and M. Pfeifhofer, The Theory of Gröbner Bases, L’Enseignment Mathématic, 34,
(1988) 215–232.

49. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University
Press, (1990).

50. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Mass. (1994).

51. M. Reid, Undergraduate Algebraic Geometry, LMS Student Texts 12, Cambridge University
Press (1990).

52. D. Richardson, Some Unsolvable Problems Involving Elementary Functions of a Real Variable,
J. Symbolic Logic, 33 (1968) 511–520.

53. R. H. Risch, The Problem of Integration in Finite Terms, Trans. AMS, 139 (1969) 167–189.

54. R. H. Risch, The Solution of the Problem of Integration in Finite Terms, Bull AMS, 76 (1970)
605–608.

55. M. Rosenlicht, On Liouville’s Theory of Elementary Functions, Pacific J. of Math., 65, 2
(1976) 485–492.

56. A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7, (1971)
281–292.

57. I. Stewart, Galois Theory, Second Edition, Chapman and Hall (1989).

120

58. D. R. Stoutemyer, Crimes and misdemeanors in the computer algebra trade, Notices of the
AMS, Sept. 1991, 701-705.

59. W. Trinks, On Improving Approximate Results of Buchberger’s Algorithm by Newton’s
Method. SIGSAM 8 (3), (1984) 7–11.

60. B. M. Trager, On the Integration of Algebraic Functions, Ph.D. Thesis, Department of Elec-
trical Engineering and Computer Science, M.I.T., (1985).

61. L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8,
(1979) 410–421.

62. B. L. van der Waerden, Modern Algebra, (2 volumes), Ungar (1964).

63. R. Walker, Algebraic Curves, Springer (1978).

64. H. S. Wilf, A Global Bisection Algorithm for Computing the Zeros of Polynomials in the
Complex Plane, J. ACM, 25, 3 (1978) 415–420).

65. F. Winkler, Polynomial Algorithms in Computer Algebra, Springer (1996).

66. H. Zassenhaus, On Hensel Factorization, I. J. Number Theory, 1, (1969) 291–311.

67. R. Zippel, Effective Polynomial Computation, Kluwer Academic Publishers (1993).

121

	Gröbner Bases
	Basics of Algebraic Geometry
	Gröbner Bases
	Definition and Characterization of Gröbner Bases
	Computation of Gröbner Bases
	Applications of Gröbner Bases
	Improvements of the Basic Gröbner Basis Algorithm
	Complexity of Computing Gröbner Bases
	Algebraic Preliminaries
	Counting

	The Case of Two Indeterminates

	Real Roots of Polynomials
	Real Root Approximation
	Square Free Decomposition

	Real Root Isolation
	Counting Real Roots of Univariate Polynomials

	Real Root Isolation by Continued Fractions
	The Ruffini–Horner Method

	Complex Roots

	Bibilography

