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CS4 Computer Algebra (2018-2019) Exercises 1
Exploring Axiom

Deadline: Monday 4 February, 4.00pm.
Note: The three sets of exercises in this course will be allocated a period of three weeks each,
however they can all be done within two weeks at most1. The extra week is to allow you to
schedule your work taking other commitments into account. You should never leave things till the
last few days, the earlier you start the better, if you need help then do ask but do this in good
time.
Total practical credit contribution: 20%; the practical marks will add up to 100, this exercise
contributes 20 towards the total.

§1. Introduction. The purpose of these exercises is to give you an opportunity to become
acquainted with Axiom. Recall that the course web page is at

http://www.inf.ed.ac.uk/teaching/courses/ca.

Files for exercises will be placed there (amongst other course information). All links mentioned
in this document can be reached by clicking on them in the pdf file. Open a terminal window and
use axiom to run Axiom (see the bottom of the course home web page on how to get your Infor-
matics DICE account details if you do not have them already). This handout takes you through
some basics, make sure you know how to write simple code by the end of your explorations. A
good way to get a feeling of what Axiom does is to download the free book at http://www.axiom-
developer.org/axiom-website/bookvol1.pdf and go through the first chapter ‘Introduction to Ax-
iom’2. Keep this pdf for reference, note also that §5 at the end of this document gives you a
summary of some useful Axiom commands (if you find commands that are frequently useful to
you but not listed do please let me know).

This document also discusses various aspects of Axiom which accounts for most of its length,
the tasks you are asked to carry out are fairly modest.

Note: Multi-line input to Axiom in an interactive window is possible but is perhaps confusing:
you either carry on typing letting the line wrap or use an underscore (i.e., ) before hitting return.
The problem (for me) is that using then return does not prevent Axiom from outputting a step
number, you just type over that! This is either a bug from porting the system or a really bad
design decision (most probably the former). By contrast, multi-line definitions in an input file
are very convenient and mercifully free of syntactic clutter (you use indentation for grouping).
Therefore it is best not to enter the rules example at the bottom of p. 8 directly3. The simplest
thing to do is to have a file called temp.input (say), enter multi-line input to that and then issue
)read temp.input or just )read temp (the extension .input is assumed).

A more detailed set of examples is given on Chapter 1 ‘An Overview of Axiom’ of the book
and you should look through this so that you know where to find some relevant examples. For
programming, Chapter 5 ‘Overview of Interactive Language’ is most relevant. You can also click
on Reference in the Axiom X11 help window then on Language and look through the various
topics. You should explore other aspects: e.g., in the Axiom X11 help window click on Topics,
this will bring up a new window with several topics you can explore4. There is no need to do
everything, use your judgment; given Axiom’s scope there are very many areas that you will not

1The deadline for the second set is 4 weeks from the date of issue because of Flexible Learning Week.
2Just a couple of points to note: in examples exponentiation is shown as ** but you can also use ^, which is now

more standard (early keyboards didn’t have this symbol). Also Axiom output is shown in mathematical notation
in the book but will be in rather ugly terminal format in interactive sessions. Axiom has an option to produce
output in TEX command format which is how the book’s output was produced.

3Note that the rules are the first five lines shown, the stuff in braces is the output from Axiom upon processing
the rules.

4Unfortunately the X11 help setup is far from perfect and sometimes crashes or does not bring up a promised
window. However the things you need to explore are generally sound.
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be able to cover (and do not need to do so for this course). So for now you can, if you like, make
sure you know the basics (obviously at least enough for these exercises) and where to find out
more as needed.

This assignment requires you to

[4 marks ]1. carry out some experiments and answer 4 simple questions given below,

[6 marks ]2. complete some supplied code (a few lines),

[10 marks ]3. write some further fairly simple Axiom code and use it.

For the tutorial part, no preparation ahead of time is required but try to be methodical in your
exploration and make brief notes (it is recommended that you read this entire document before
starting). In particular, make sure you grasp the basics of programming in Axiom. You do not
need to go into sophisticated features, for this course we will only write straightforward functions
using things such as loops, lists, records, recursion etc. So you need to understand these. However
you do not need to go through all possible variations of, e.g., for loops (make sure you understand
how to iterate for a number of times and also over the elements of a list). You also need to pay
attention to the way that Axiom handles types and domains, see below for a brief discussion.

The purpose of the code part of this exercise is to provide you with some early practice and
feedback. Please note that you should type your code into the single plain text file called ex1.input

which can be downloaded from the course web page (use this name exactly, note the extension).
Use )read ex1.input or just )read ex1 in Axiom to load it (this assumes that you are running
Axiom in the directory that contains your file which is the best option). Do not put anything
other than the code in this file, so if you carry out tests either do them interactively or put them
in a separate file which you should not submit.

You might like to keep the directive )set messages interponly off at the head of the code
file to avoid seeing messages from Axiom that do not help you at this stage (or even later on);
experiment to see what difference this makes. Alternatively you can put this and other customising
commands in a file .axiom.input in your home directory, Axiom looks for and reads such a file
on startup so it is a good way to customise it5. Note that officially using the option )quiet

with )read gets Axiom to read a file without echoing it in the interactive window; unfortunately
this option is broken in some versions. For this course it is perhaps best to see the input echoed
anyway, look through it in case Axiom gives any error messages about part of the input.

Each function is given a guide number of lines of well laid out code (comments are not included
in this guide count but you must supply sensible comments for each function or face a penalty).
The following example is reasonable convention for comments

-- Input:

-- e.....an object.

-- L.....a list.

-- Output:

-- A new list with e as its first element and the elements of L as the rest.

-- Assumptions:

-- The type of e is compatible with the type of objects in L, if not then

-- Axiom will issue an error at runtime.

ins(e,L)==cons(e,L)

(Obviously there is no need for such a function other than as an illustration.) Note that excessive
comments in the code itself can get in the way of understanding and maintaining it. Use them
judiciously. The meaning of the guide line count is that an implementation has been carried
out in that many lines, no ingenuity was required for this and it is given as a form of further
guidance. Precede each of your functions with a description of the required input, the output and
any assumptions made, in the style shown above. There will be a very heavy penalty for incorrect,

5For example, by default Axiom asks you to confirm after issuing )quit, if you don’t like this then put )set

quit unprotected in .axiom.input.
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unclear or very inefficient code though it would be hard to produce such bad code for the simple
tasks in this assignment (the natural way to do things is fine).

Warning: Take care that you only ever enter plain text into Axiom. For example, if you convert
your file ex1.input into rtf format and then issue )read ex1.input Axiom will not work as
expected. With a file that is not plain text it might appear that it has been processed normally
till you try to use a function defined in the file (you are likely to get confusing error messages). This
is something to bear in mind if you copy and paste from anything other than plain text; importing
unexpected invisible characters will cause problems (so, e.g., do not cut and paste commands from
a pdf file to an interactive session). If you import non plain text by mistake it is best to quit,
using )quit, and restart.

A slightly annoying problem is that while you can use the arrow keys to recall commands in
an interactive session and then move into the text to edit, the odd character is occasionally lost
or inserted! Keep an eye open for this, the cause is unclear. By now it might seem that Axiom
is far too unreliable for serious use. This is not the case, the various small problems are interface
related and probably stem from changes since Axiom was implemented or from porting it to new
platforms. The underlying system of mathematical algorithms seems very robust

Note: Here and throughout the course we will adopt the standard convention that typewriter

font indicates computer code or input at a line terminal. So a:=2*x^2-x+3 indicates assignment
to the named variable. When discussing the code it is at times clearer to indicate objects in
mathematical notation so we can say that a = 2x2 − x+ 3 after the assignment.

Submission: Hand in a copy of your report with the four answers, also your answer to Exercise 4.1
and attach a printout of your code so that I can give you feedback on it. You are also required to
submit your code (and nothing else) electronically, remember to submit it in the single file called
ex1.input without any other extension. Your file should contain nothing other than the code
and relevant comments to it. The report can be handwritten or typed, as you prefer but must be
submitted in paper copy. Consult the course web page instructions for details of how to submit.

Good Scholarly Practice: Please remember the University requirement as regards all assessed
work for credit. Details and advice about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

and links from there. Note that, in particular, you are required to take reasonable measures to
protect your assessed work from unauthorised access. For example, if you put any such work on a
public repository then you must set access permissions appropriately (generally permitting access
only to yourself, or your group in the case of group practicals).

§2. Some experiments. Axiom gains strength from a notion of inheritance so that operations
have a common name but become specialised as data does the same. Consider for example the
notion of greatest common divisors. Technically these make sense in any unique factorisation
domain (UFD), of which the archetype is the ring of integers Z. As a consequence Axiom supplies
just one operation called gcd whose effect is determined by the type of its arguments (this tells
Axiom in which UFD it is working6). In our examples Z, Z[x], Q[x] are specialisations of the
general notion of UFD so gcd applies. Since we have Z ⊂ Z[x] ⊂ Q[x] and these are all UFDs
Axiom knows that given an integer and a polynomial in x with integer coefficients (i.e., an element
of Z[x]) we can take the gcd (the integer can be regarded as a constant polynomial from Z[x]).
Consider the following session:

(1) -> a:=1111

(1) ->

(1) 1111

6In axiom Domain is a technical term that denotes kinds of objects. Each object belongs to a unique domain
but can have more than one type corresponding to specialisations or extensions of its parent domain. So, e.g., 8
belongs to Integer and has this type but it can also have type PositiveInteger or UP(x,Integer), i.e., univariate
polynomial in x with integer coefficients, etc.
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Type: PositiveInteger

(2) -> b:=111111

b:=111111

(2) ->

(2) 111111

Type: PositiveInteger

(3) -> gcd(a,b)

gcd(a,b)

(3) ->

(3) 11

Type: PositiveInteger

(4) -> a:=2*(x^2-1)

a:=2*(x^2-1)

(4) ->

2

(4) 2x - 2

Type: Polynomial(Integer)

(5) -> b:=6*(x+1)*(x^2+2)

b:=6*(x+1)*(x^2+2)

(5) ->

3 2

(5) 6x + 6x + 12x + 12

Type: Polynomial(Integer)

(6) -> gcd(a,b)

gcd(a,b)

(6) ->

(6) 2x + 2

Type: Polynomial(Integer)

(7) -> a:=a::UP(x,Fraction(Integer))

a:=2*(x^2-1)::UP(x,Fraction(Integer))

(7) ->

2

(7) 2x - 2

Type: UnivariatePolynomial(x,Fraction(Integer))

(8) -> b:=b::UP(x,Fraction(Integer))

b:=6*(x+1)*(x^2+2)::UP(x,Fraction(Integer))

(8) ->

3 2

(8) 6x + 6x + 12x + 12

Type: Polynomial(Fraction(Integer))

(9) -> gcd(a,b)

gcd(a,b)

(9) ->

(9) x + 1

Type: Polynomial(Fraction(Integer))

(10) -> a:=10

a:=10

(10) ->

(10) 10

Type: PositiveInteger

(11) -> b:=6*(x+1)*(x^2-2*x+1)

b:=6*(x+1)*(x^2-2*x+1)

(11) ->

3 2
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(11) 6x - 6x - 6x + 6

Type: Polynomial(Integer)

(12) -> gcd(a,b)

gcd(a,b)

(12) ->

(12) 2

Note that UP is shorthand for UnivariatePolynomial, quite a few abbreviations are built in (see §6
for a list of the most commonly used). The type Fraction(Integer) denotes the rational numbers,
we can use Fraction(D) for any integral domain D7. We could abbreviate Fraction(Integer) as
FRAC(INT), or even FRAC INT (parentheses around a single argument can be omitted when the
argument is a number or a symbol). Note also that :: is used to convert from one type to another
when this is possible (as would be expected, : is used to declare the type of an object). For the
first gcd, Axiom recognises the arguments as being integers8 and finds their gcd there, i.e., in Z.
For the next example it assigns the most general type it can to the polynomials and finds the gcd
in Z[x]. For the third example we keep the same polynomials but tell Axiom that in fact we are
thinking of them as elements of Q[x]. The effect of this is that the multiplicative constant 2 is
thrown away as it is invertible in Q (but not in Z, which is why it is kept for the gcd computed
in Z[x]).

Finally note the following behaviour:

(1) -> a:=1/2

a:=1/2

(1) ->

1

(1) -

2

Type: Fraction(Integer)

(2) -> a:=1

a:=1

(2) ->

(2) 1

Type: PositiveInteger

(3) -> a:Fraction(Integer):=1/2

a:Fraction(Integer):=1/2

3) ->

You cannot declare a to be of type Fraction(Integer) because either

the declared type of a or the type of the value of a is different

from Fraction(Integer) .

(3) -> a:=1/2

a:=1/2

(3) ->

1

(3) -

2

Type: Fraction(Integer)

(4) -> a:Fraction(Integer):=1

a:Fraction(Integer):=1

7This is Axiom’s main way of building domains for computation. So for example the field Zn for n a prime
number is built by using the constructor PrimeField, i.e., PrimeField(n) (which can be abbreviated to PF(n) or
PF n). Note that the word “domain” in Axiom denotes the single place in which an item of data resides and this
is not necessarily an integral domain or indeed any algebraic structure.

8It is an important aspect of Axiom’s design that the user is not forced to declare types in situations where they
can be deduced.
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(4) ->

(4) 1

Type: Fraction(Integer)

(5) -> a

a

(5) ->

(5) 1

Type: Fraction(Integer)

(6) -> a:=x^2+1

a:=x^2+1

6) ->

Cannot convert right-hand side of assignment

2

x + 1

to an object of the type Fraction(Integer) of the left-hand side.

(7) -> a:=1::UP(x,FRAC INT)

a:=1::UP(x,FRAC INT)

(7) ->

(7) 1

Type: Fraction(Integer)

Initially we assign a fraction to a so Axiom sees that variable as having this type (i.e., the type is
Fraction(Integer) or FRAC INT for short), natural and convenient. Next we assign an integer
to a and so Axiom changes the type of a to be Integer (abbreviated to INT). We then try to
assign 1/2 to a but do this by declaring the type of a to be Fraction(Integer) which is not true,
it is currently Integer. As a result Axiom complains. We proceed to assign 1/2 to a at which
point Axiom changes the type of a to be Fraction(Integer). Subsequently we assign 1 to a but
prevent any change of the type by declaring the type to be still Fraction(Integer). The last
attempted assignment shows that automatic changes of type are only possible with compatible
ones, Axiom will not change a numeric type to one of polynomials. Perhaps the simplest thing
to do when you want assign a value of a new type or to convert the value of a variable from its
current type to a new one and keep the value as the new type is to store it in a brand new variable
(or one you know to be of the new type).

As the examples show, Axiom does a good job of deducing type information so that it is not
necessary to give it for many uses. This is convenient especially for interactive sessions. However
under some circumstances it cannot deduce the type (largely for efficiency reasons) and the user
must therefore supply enough information to help the system. You are unlikely to come across
this for the exercises in this course but it is important to bear it in mind.

[4 marks ]Question 1: What does Axiom do if in the first example we use a:=1111::Fraction(Integer)

but keep the declaration of b as before (i.e., b:=111111? Explain why Axiom’s answer is
correct.

Question 2: In Axiom an expression such as [1,4,9] denotes a list (in this case of integers).
Suppose L is a list of numbers (or indeed elements from any ring). How would you write a
single line command involving a for loop to print out the square of each entry in L? Note
that the way to get the ith entry of a list in Axiom is L.i (this is a fairly uniform notation
for various compound structures, e.g., it works the same way for records). However there is
a neater way to write the loop that does not involve explicit indexing into the list.

Question 3: Enter the single line function definition insert(L,i,e)==(L.i:=e; L) (in an inter-
active session). This takes as arguments a list L an index i to the list (assumed to be valid)
and an element e (assumed to be of the correct type). The function returns the list obtained
by replacing the ith entry of the list L by e. Test the function with some valid calls. Now
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declare L:=[1,2,3] and try the command insert(L,5,1) what happens? Issue the com-
mand insert(L,1,x) what happens? Finally issue the command insert(L::List(POLY

INT),1,x). Comment very briefly on the appropriateness of these behaviours.

Note that == in Axiom is delayed assignment, it tells the system not to evaluate things until
necessary (e.g., for a function definition evaluate at the time of calling the funciton). We
will use this for the definition of functions though it can be used in other contexts as well.

Question 4: We could have specified types for the function insert as follows:

insert:(List(Integer),PositiveInteger,Integer)->List(Integer)

insert(L,i,e)==(L.i:=e; L)

or as

insert(L:List(Integer),i:PositiveInteger,e:Integer):List(Integer)==(L.i:=e; L)

Explain an application advantage of not specifying the types.

Note carefully the two mechanisms for declaring the types of functions, you will need them
in the future. Which one you use is partly a matter of taste but also of practicality, the first
method is arguably preferable in most cases as it keeps function code tidy. On the other
hand if the function header and the types are fairly brief then the second method seems fine.

§3. Sturm sequences. In this section you will complete the implementation of an algorithm
that we will study later on in the course, most of the code is supplied in the file ex1.input which
you can download from the course web page you only need to add a few lines to the function
Sturm (see Figure 1). The amount of code is fairly modest but it brings up some subtle issues
connected with Axiom’s type system; you are encouraged to experiment interactively to see the
various points in action.

An age old problem that is still of interest is to count the number of real roots of a univariate
polynomial with real coefficients in a given interval. In 1834 Sturm published a remarkable theorem
that shows us how to do this exactly without ever trying to find any roots. Before we state this we
need a simple definition: a polynomial is said to be square free if it has no repeated non constant
factors, this is the same as saying that it has no repeated roots (real or complex). We will see later
on that for any non-zero polynomial p the polynomial p/ gcd(p, p′) has the same factors (hence
roots) as p but without repetitions (here p′ is the derivative of p). We now assume that p is square
free. Consider the sequence

Sturm(p) = p0, p1, . . . , pn

defined by
p0(x) = p,

p1(x) = p′,

pi = − remainder(pi−2, pi−1), for i ≥ 2.

where ‘remainder’ means the remainder from polynomial division. The process stops when we get
to a constant non-zero polynomial, so this happens after at most deg(p) steps. For a number a
define Sturma(p) to be the sequence of numbers obtained by evaluating the sequence Sturm(p)
at a (i.e., substitute a for the indeterminate). We define the variation of a sequence of numbers to
be the number of times we change sign in going from the first number to the last, ingnoring any
occurrences of 0. Thus the sequence 1,−1, 1 has 2 variations as does 0, 1, 0, 0, 0,−1, 0, 1. Define
V (p, a) to be the variation of the sequence Sturma(p).

Sturm’s theorem states that if p is square free and a ≤ b are real numbers then the number of
roots of p in the half open interval9 (a, b] is exactly V (p, a)−V (p, b). As we will see in the course,

9By definition (a, b] is the set of real numbers r that satisfy a < r ≤ b, note that if a = b then the set is empty.
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we can use this to approximate the real roots of p to any degree of accuracy. For now we will just
focus on counting the number of roots in an interval. Figure 1 shows most of the required code.
It is also possible to use Sturm sequences directly to count the total number of real roots, this will
be discussed later in the course.

There is a subtlety in connection with rootsCount that is important to appreciate. At first
sight it might seem odd that we use the type POLY(FRAC(INT)) which allows polynomials in any
number of indeterminates so long as they have rational coefficients whereas we want only such
polynomials that are univariate. So it seems better to use the type UP(x,FRAC(INT)). This would
work fine10 but only so long as the indeterminate is x, so it accepts x2 − 1 but complains about
y2−1. This is because the x in the type UP(x,FRAC(INT)) of the header is a literal and does not get
bound at the time of call. In the code itself we can get around this by assigning the indeterminate
to a local variable x after which uses of the type UP(x,FRAC(INT)) will be interpreted as referring
to the value that x holds. This observation is useful for the function Sturm whose code you will
complete. The specification is:

Declaration: Sturm(p:POLY(FRAC(INT))):List(POLY(FRAC(INT)))

[6 marks ]
Parameter: p a polynomial with rational coefficients

Output: A list consisting of the Sturm sequence of the square free part of p provided that this is
a univariate non-zero polynomial with rational coefficients, otherwise an error is signalled.

Number of lines: 20 (this is the total number of lines of my complete implementation, so this
counts the ones you are given not just the few you need to write).

Remark: The code checks that the conditions on p are satisfied and, if not, then an error is
signalled. Note that although we carry out checks in rootsCount it is reasonable to expect
that Sturm will be called on its own by users and so checking is carried out here as well.

Take care to have the correct type assigned to objects when applying an operation, this is
particularly important for rem. Consider the following session:

(1) -> f1:=x^2-1

(1) ->

2

(1) x - 1

Type: Polynomial(Integer)

(2) -> g1:=2*x

g1:=2*x

(2) ->

(2) 2x

Type: Polynomial(Integer)

(3) -> f1 rem g1

f1 rem g1

There are 2 exposed and 1 unexposed library operations named rem

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op rem

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

10There is another subtlety that can be confusing. The symbol x of a polynomial p passed to the alternative func-
tion becomes implicit and different from any other x we might use in the body. So Axiom complains if we use D(p,x)

in this version but will work fine with D(p). To see this try test1(f:UP(x,FRAC(INT))):UP(x,FRAC(INT))==D(f,x)

as compared to test2(f:UP(x,FRAC(INT))):UP(x,FRAC(INT))==D(f).
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--You MUST supply appropriate comments here, see below for a style.

Sturm(p:POLY(FRAC(INT))):List(POLY(FRAC(INT)))==

local V,x,S

if p=0 then error("The polynomial must not be 0")

else if totalDegree(p)=0 then [p]

else

V:=variables(p)

if #(V)>1 then error("The polynomial must be univariate")

x:=V.1

q:=p/gcd(p,D(p,x))

q1:???:=q -- replace the two ??? by the appropriate type. Remove this comment.

q2:???:=D(q,x)

S:=[q1,q2]

repeat

--Fill in the next few lines to complete finding the Sturm sequence. Remove this comment.

???

...

???

S

--Input:

-- L.....a list of rationals.

--Output:

-- The number of sign variations in L.

variation(L:List(FRAC(INT))):NNI==

local v

if L=[] then 0

else

v:=0

p:=L.1

for n in L repeat

if n~=0 then

if p~=0 and sign(p)~=sign(n) then v:=v+1

p:=n

v

--Input:

-- p.......a polynomial with rational coefficients.

-- a,b.....rational numbers.

--Output:

-- The number of real roots of p in (a,b].

--Checks:

-- If p is not univariate or a>b then an error is signalled by the code.

rootsCount(p:POLY(FRAC(INT)),a:FRAC(INT),b:FRAC(INT)):Union(NNI,String)==

local V,x,S

if a>b then

error("The first endpoint of the interval cannot be strictly larger than the second.")

V:=variables(p)

if #(V)>1 then error("The polynomial must be univariate")

if p=0 then "infinite"

else if totalDegree(p)=0 then 0

else

if #(V)=1 then x:=V.1

S:=Sturm(p)

variation(eval(S,x=a))-variation(eval(S,x=b))

Figure 1: Code in the file ex1.input from the course web page.
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Cannot find a definition or applicable library operation named rem

with argument type(s)

Polynomial(Integer)

Polynomial(Integer)

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

(3) -> f2:UP(x,FRAC(INT)):=x^2-1

f2:UP(x,FRAC(INT)):=x^2-1

(3) ->

2

(3) x - 1

Type: UnivariatePolynomial(x,Fraction(Integer))

(4) -> g2:UP(x,FRAC(INT)):=2*x

g2:UP(x,FRAC(INT)):=2*x

(4) ->

(4) 2x

Type: UnivariatePolynomial(x,Fraction(Integer))

(5) -> f2 rem g2

f2 rem g2

(5) ->

(5) - 1

Type: UnivariatePolynomial(x,Fraction(Integer))

The behaviour is not a bug. It does not make sense to ask for the remainder of objects of
type POLY(INT) (mathematically) whereas it does do so for objects of type UP(x,FRAC(POLY)
(again mathematically).

Useful Axiom functions: totalDegree, gcd, variables, error, rem, append, break.

Examples: (12) -> Sturm(x^2-1)

Sturm(x^2-1)

(12) ->

2

(12) [x - 1,2x,1]

Type: List(Polynomial(Fraction(Integer)))

(13) -> Sturm((x^2-1)^4)

Sturm((x^2-1)^4)

(13) ->

2

(13) [x - 1,2x,1]

Type: List(Polynomial(Fraction(Integer)))

(14) -> Sturm(x^2+1)

Sturm(x^2+1)

(14) ->

2

(14) [x + 1,2x,- 1]

Type: List(Polynomial(Fraction(Integer)))

(15) -> Sturm(x^3-7*x+7)

Sturm(x^3-7*x+7)

(15) ->

3 2 14 1

(15) [x - 7x + 7,3x - 7,-- x - 7,-]

3 4

Type: List(Polynomial(Fraction(Integer)))
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(16) -> Sturm(1)

Sturm(1)

(16) ->

(16) [1]

Type: List(Polynomial(Fraction(Integer)))

(17) -> rootsCount(x^2-1,-1,1)

rootsCount(x^2-1,-1,1)

(17) ->

(17) 1

Type: Union(NonNegativeInteger,...)

(18) -> rootsCount(x^2-1,-1,2)

rootsCount(x^2-1,-1,2)

(18) ->

(18) 1

Type: Union(NonNegativeInteger,...)

(19) -> rootsCount(x^2+1,-100,100)

rootsCount(x^2+1,-100,100)

(19) ->

(19) 0

Type: Union(NonNegativeInteger,...)

(20) -> rootsCount(x^3-7*x+7,-3,3)

rootsCount(x^3-7*x+7,-3,3)

(20) ->

(20) 2

Type: Union(NonNegativeInteger,...)

(21) -> rootsCount(x^3-7*x+7,-10,3)

rootsCount(x^3-7*x+7,-10,3)

(21) ->

(21) 3

Type: Union(NonNegativeInteger,...)

(22) -> rootsCount(0,-10,3)

rootsCount(0,-10,3)

(22) ->

(22) "infinite"

Type: Union(String,...)

(23) -> rootsCount(1,-10,3)

rootsCount(1,-10,3)

(23) ->

(23) 0

§4. Modular Arithmetic with Polynomials. Consider a field k (e.g., the rational numbers Q
or the integers modulo a prime number n, denoted by Zn), an indeterminate x over k and a non-
zero polynomial p(x) ∈ k[x]. We will see that the the Euclidean algorithm holds here: if h(x) is
any polynomial we may write it uniquely as

h(x) = p(x)q(x) + r(x)

where r(x) = 0 or deg(r(x)) < deg(p(x)). We call r(x) the remainder of h(x) modulo p(x) and
write

h(x) ≡ r(x) (mod p(x)).

Alternatively we may denote r(x) by h(x) mod p(x). Now put

k[x]/(p(x)) = {h(x) mod p(x) | h(x) ∈ k[x]},
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i.e., the set of all remainders modulo p(x). Note that the parenthesis around p(x) in k[x]/(p(x))
are not optional (we will see why later in the course; they denote the ideal of k[x] generated by
p(x)). In contrast we frequently write just p instead of p(x), we have kept the ‘argument’ in this
early exercise to stress that we are dealing with polynomials in x. We have simplified matters
here: formally the elements of k[x]/(p(x)) are the equivalence classes of the relation

f(x) ∼ g(x)⇐⇒ (f(x) mod p(x)) = (g(x) mod p(x)) in k[x].

The right hand side is equivalent to p(x) | f(x) − g(x) in k[x]. What we have done above is to
replace each equivalence class with a unique representative from it. For example take k = Q and
p(x) = x2 + 1. Then x as an element of Q[x]/(x2 + 1) stands for the class {(x2 + 1)h(x) + x |
h(x) ∈ Q[x]}. So, when viewed as elements of Q[x]/(x2 + 1), the polynomials x, x+ (x2 + 1) and
x + (x3 − 3x2 + 5x − 6)(x2 + 1) are equal and represented by the remainder x. It is useful to
compare this practice with the case of the integers modulo an integer. In fact we could choose to
work with any set of representatives, one from each equivalence class. Bearing the analogy with
the integers modulo an integer in mind we define addition and subtraction on our new set in the
obvious way:

r0(x) + r1(x) means (r0(x) + r1(x)) mod p(x),

r0(x)r1(x) means (r0(x)r1(x)) mod p(x).

More accurately we are defining the operations on equivalence classes. Using [f ] to denote the
equivalence class of f (i.e., {g | p | f − g}), we have defined [f ] + [g] = [f + g] and [f ][g] = [fg].
It is not hard to show the following: if f1, f2 belong to the same equivalence class and similarly
for g1, g2 then f1 + g1 belongs to the same equivalence class as f2 + g2; likewise for f1g1 and f2g2.
Thus the operations on equivalence classes are well defined; we will return to these points in full
generality later on in the course.

Recall that in the case of the integers modulo a given integer we obtain a commutative ring
with identity. In fact the same happens in the polynomial case and the notation k[x]/(p) is used
to denote the ring thus obtained (note that we have dropped the ‘argument’ from p(x) since it
is clear from the context). The rather simple programming task of this part is to implement the
operations of this ring for the case k = Zn where n is a prime number.

You are required to write two simple functions as specified below. These are largely an exercise
in type conversion with a bit of checking thrown in Axiom can do most of for you. Note that you
can use variables in a function block without declaration, they are implicitly local but this is not
good practice. You can declare a list of variables v1, v2, . . . as local by using local v1, v2, ....
If you want to use a global variable (not recommended) then you can declare it by using free.

First an important point. We want our functions to work with univariate polynomials, all
in the same indeterminate. It is tempting to declare the type of these to be UP(x,INT). This
would indeed work but it has the drawback that our code will work only with polynomials in x
(the type declaration is fixed, not a template). We can get around this by declaring the types of
the polynomials to be POLY(INT) and then add a bit of code to check they are as needed. The
following does the job for f and signals an error if necessary otherwise it stores the indeterminate
in the local variable x (see the function Sturm on p.10).

V:=variables(f)

if #(V)>1 then error "Polynomials must be univariate in the same indeterminate."

else if #(V)=1 then x:=V.1

Think about what happens if f has no indeterminates and why the code is correct. Use the
code above appropriately in the functions you write (there is a neat way to test that the three
polynomial parameters of the functions pass the test).

Write a function padd with the following specification:

Declaration:
padd:(POLY(INT),POLY(INT),POLY(INT),PositiveInteger)->Any

padd(q1,q2,p,n).
[4 marks ]
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Parameters: q1,q2,p univariate polynomials in the same indeterminate with in-
teger coefficients where p is non-zero in Zn[x].

n a prime number.

Output: The representative of q1 + q2 in the ring Zn[x]/(p).

Number of lines: 10 (including type declaration and header).

Remarks: For this and the next function we are using Axiom’s type checking to the full. Ex-
periment to see what Axiom does if any of the parameters is not as required (e.g., p = 0 in
Zn[x], note that this is not the same as requiring p to be the non-zero polynomial in Z[x]).

It is at first surprising that the return type is given as Any rather than, e.g., UP(x,PF n)

(recall that PF is the abbreviation for PrimeField). The difficulty here is that the constructor
PrimeField needs to know the value of its argument so that it can check it is indeed a prime
number. The use of the special domain and associated type Any gets around this. We get
our function to return a result of type UP(x,PF n) by arranging for this in its body, here
we can declare things to be of this type because by the time it is used n has a value. At this
stage Axiom will check if n is a prime and proceed if it is otherwise signal an error. The trick
of using Any is of course not ideal since the user cannot determine the result type without
checking the code, similarly for the compiler.

Useful Axiom functions: error, rem (this is infix, i.e., f rem g, take care as regards its prece-
dence).

Examples:

(3) -> )read paddTest

)read paddTest

padd(3*x^5-4*x^2+x-2,5*x^4+10*x-1,2*x^2+1,11)

(7) 9x + 3

Type: UnivariatePolynomial(x,PrimeField(11))

padd(x^2+1,2*x^3-x+10,x^3+x+1,7)

2

(8) x + 4x + 2

Type: UnivariatePolynomial(x,PrimeField(7))

padd(y^3-2*y+1,y^4+1,y-1,3)

(9) 2

Type: UnivariatePolynomial(y,PrimeField(3))

padd(z^2+1,2*z^3-z+10,z^3+z+1,5)

2

(10) z + 2z + 4

Type: UnivariatePolynomial(z,PrimeField(5))

padd(x^2+1,2*y^3-y+10,x^3+x+1,5)

Error signalled from user code:

Polynomials must be univariate in the same indeterminate.
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You can download the test file paddTest.input from the course web page. Of course you should
test your implementation further. Note that the test causing an error has been placed last since
Axiom stops processing input when as error is found; in an interactive session you can carry on
with more input.

Write a function pmul with the following specification:

Declaration:
pmul:(POLY(INT),POLY(INT),POLY(INT),PositiveInteger)->Any

pmul(q1,q2,p,n).

[2 marks ]Parameters: q1,q2,p univariate polynomials in the same indeterminate with in-
teger coefficients where p is non-zero in Zn[x].

n a prime number.

Output: The representative of q1q2 in the ring Zn[x]/(p).

Number of lines: 10 (including type declaration and header).

Remarks: See the remarks for the function padd.

Useful Axiom functions: see the entry for padd

Examples:

(6) -> )read pmulTest

)read pmulTest

pmul(3*x^5-4*x^2+x-2,5*x^4+10*x-1,2*x^2+1,11)

(7) 8x + 5

Type: UnivariatePolynomial(x,PrimeField(11))

pmul(x^2+1,2*x^3-x+10,x^3+x+1,7)

2

(8) x + 4

Type: UnivariatePolynomial(x,PrimeField(7))

pmul(y^3-2*y+1,y^4+1,y-1,3)

(9) 0

Type: UnivariatePolynomial(y,PrimeField(3))

pmul(z^2+1,2*z^3-z+10,z^3+z+1,5)

2

(10) 3z + 1

Type: UnivariatePolynomial(z,PrimeField(5))

pmul(x^2+1,2*y^3-y+10,x^3+x+1,5)

Error signalled from user code:

Polynomials must be univariate in the same indeterminate.

Just as above, you can download the test file pmulTest.input from the course web page and you
should test your implementation further. Once again the test causing an error has been placed
last.
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Note: In all cases the code is very simple, focus on how Axiom does things and work with it
not against it. A common error is to ignore the type system, either in the use of variables or the
production of results, this leads to frustration and contorted code.

[4 marks ]Exercise 4.1 Let p = x2 + x+ 1 so that Z2[x]/(p) has four elements: 0, 1, x, 1 + x (to be more
accurate the four elements are the equivalence classes represented by the given expressions). Write
the addition and multiplication tables of this ring. That is, fill in the tables:

+ 0 1 x 1 + x
0 0 1 x 1 + x
1
x

1 + x

× 0 1 x 1 + x
0
1
x

1 + x

Is Z2[x]/(p) a field? Justify your answer briefly, you may assume that Z2[x]/(p) is a commutative
ring with identity (we will justify this in a general setting later on).

As a goodwill gesture here is a nice way to produce the addition table (some Axiom output has
been deleted):

(3) -> p:=x^2+x+1

p:=x^2+x+1

(3) ->

2

(3) x + x + 1

Type: Polynomial(Integer)

(4) -> A:Matrix(UP(x,PrimeField 2)):=new(4,4,0)

A:Matrix(UP(x,PrimeField(2))):=new(4,4,0)

(4) ->

Type: Matrix(UnivariatePolynomial(x,PrimeField(2)))

(5) -> L:=[0,1,x,1+x]

L:=[0,1,x,1+x]

(5) ->

(5) [0,1,x,x + 1]

Type: List(Polynomial(Integer))

(6) -> for i in 1..4 repeat for j in 1..4 repeat A(i,j):=padd(L.i,L.j,p,x,2)

for i in 1..4 repeat for j in 1..4 repeat A(i,j):=padd(L.i,L.j,p,x,2)

Type: Void

(7) -> A

A

(7) ->

In your handin just give the tables, no need to show how you got them.

§5. Some useful Axiom commands. You can get a full description of commands starting
with ) from the X11 help facility via, e.g., Browse>Commands.

• )quit: Quit Axiom.

• )hd: Relaunch the X11 hyper document help system. Useful if you close it by mistake or it
crashes.

• )set: Customises Axiom’s behaviour in many ways. Issuing )set by itself will output a
message showing the available topics on which further information can be obtained. For
example, )set output will produce a list of the ways in which output can be modified.
Thus )set output tex on will produce TEX output to commands, useful if you want to
import the result to a document. Issuing )set output tex off will revert to the standard
output format.
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• )clear: This can be used to undo various things, see the online help for all the options. One
useful option is )clear all which in effect starts a new session (but with the advantage
that you can recall previous entries using the up arrow key). Another good use is to ‘reset’
a variable name, e.g., )clear properties x will forget any assignment or type associated
with x.

• )read: Used to read in a file which is given as the next argument, e.g., )read ex1 (note
that it is assumed the file has the extension .input. The file name can include a directory
path in Unix style.

• %: Returns the last result. Use %%(n) to return results of other steps. Here n is either a
negative number (denoting how many steps to go back) or a positive one giving the actual
step number as shown by Axiom. Thus %%(-1) is the same as just %.

In general % is used to denote the start of a macro definition. Axiom has various ones built
in, e.g., %i denotes the square root of −1, %pi denotes π and %infinity denotes ∞.

• : Indicates continuation of an input line but see the first note in §1 (the symbol is an
underscore).

• --: Indicates the start of a comment which lasts till the end of the line (the symbol consists
of two minus signs).

• ++: Same as --, i.e., start of a comment.

• Ctrl+C: Interrupt the current computation and return to interactive session.

• Tab Key: Provides name completion for Axiom operations. Repeated pressing of the key
gives the alternative completions. For example if the tab key is pressed after entering
groebn the name is completed to groebner. Pressing tab repeatedly produces groebner?,
groebnerFactorize etc.

§6. Some useful Axiom constructor abbreviations. The following are some abbreviations
taken from p.68 of the Axiom documentation book (as you can see a few are not really abbreviations
but are there for consistency).

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat
EXPR abbreviates Expression FLOAT abbreviates Float
FRAC abbreviates Fraction INT abbreviates Integer
MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger
PI abbreviates PositiveInteger POLY abbreviates Polynomial
STRING abbreviates String UP abbreviates UnivariatePolynomial
PF abbreviates PrimeField

You can combine both full constructor names and abbreviations in a type expression, for example:

POLY INT is the same as Polynomial(INT)
POLY(Integer) is the same as Polynomial(Integer)
POLY(Integer) is the same as Polynomial(INT)
FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

Kyriakos Kalorkoti, January 2018
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